

Koaxial- und Kegelstirnradgetriebemotoren

2635-23.03-1

Inhalt

1	Rossi for You	6
	1.1 Globale Präsenz Lokaler Service	8
2	Produktübersicht	10
	2.1 Eigenschaften und Vorteile	12
	2.2 Elektromotoren	14
	2.3 Frequenzumrichter	15
	2.4 Produktreihe	16
3	Zeichen und Maßeinheiten	18
	3.1 Zeichen und Maßeinheiten	20
	3.2 Bildsprache	22
4	Produkteigenschaften	24
	4.1 Allgemeine Eigenschaften	26
	4.2 Betriebsbedingungen	29
	4.3 Oberflächenschutz	32
	4.4 Lagerung und Aufbewahrung	33
5	Bezeichnung	34
	5.1 Kodierung	36
	5.2 Typenschildsdaten	44
6	Project Planning	46
	6.1 Auswahl	48
	6.2 Betriebsfaktor	51
	6.3 Wirkungsgrad	52
	6.4 Wärmeleistung	53
	6.5 Radialbelastungen auf langsamlaufendem Wellenende	55
7	Bauformen	58
	7.1 Bauformen	60
	7.2 Schraubenposition	62

8	Bau-	und Betriebsdetails	70
	8.1	Schmierung	72
	8.2	Motoradapter	74
	8.3	IEC- oder NEMA-Motoreinbau auf Adapter	76
	8.4	Befestigungsschrauben	76
	8.5	Details der Befestigungsflansche des Getriebemotors	77
	8.6	Abmessungstoleranzen	79
	8.7	Hinweise zu den Abmessungen	80
9	Ausw	vahltabellen Koaxial - iC	82
	9.1	Mögliche geometrische Kombieinheiten	84
	9.2	Geometrische Kupplungstabellen	85
	9.3	Auswahltabellen [kW]	94
10	Maßz	eichnungen Koaxial - iC	132
	10.1	iC 272/iC 273	134
	10.2	iC 372/iC 373	136
	10.3	iC 472/iC 473	138
	10.4	iC 572/iC 573	140
	10.5	iC 672/iC 673	142
	10.6	iC 772/iC 773	144
	10.7	iC 872/iC 873	146
	10.8	iC 972/iC 973	148
11	Ausw	vahltabellen Kegelstirnrad - iO	150
	11.1	Mögliche geometrische Kombieinheiten	152
	11.2	Geometrische Kupplungstabellen	153
	11.3	Auswahltabellen [kW]	160
12	Maßz	eichnungen Kegelstirnrad - iO	184
	12.1	iO 373	186
	12.2	iO 473	189
	12.3	iO 573	192
	12.4	iO 673	195
	12.5	iO 773	198
	12.6	iO 873	201
	12.7	iO 973	204

13	Kompakter Drehstrommotor HB und Bremsmotor HBZ					
	13.1 Kompakter asynchroner Drehstrommotor HB	210				
	13.2 Technische Angaben des kompakten asynchronen Drehstrommotor HB	212				
	13.3 Kompakter asynchroner Drehstrom-Bremsmotor HBZ	215				
	13.4 Technische Angaben des kompakten asynchronen Drehstrom-Bremsmotors HBZ	219				
14	Aufstellung und Wartung	222				
	14.1 Sicherheit	224				
	14.2 Aufstellung und Wartung	225				
15	Auswahlformular	226				
16	Technische Formeln	227				

Rossi for You

Innovation

Rossi bietet Komplettlösungen für die Industrie, welche sich ständig weiterentwickelt. Das Angebot umfasst innovative Getriebetypen und Getriebemotoren auch für kundenspezifische Anwendungen mit dem Ziel entwickelt, die Leistungseffizienz zu maximieren und die Gesamtproduktionskosten (TCO) zu reduzieren.

Maximale Qualität mit 3 Jahren Garantie

Das Ziel von Rossi ist, die Produktivität unserer Kunden nachhaltig zu steigern. Dafür liefert Rossi weltweit, qualitativ hochwertige und extrem präzise Antriebstechnik für alle Kundenanforderungen und angepasst an die härtesten Bedingungen vor Ort.

Nachhaltige Zuverlässigkeit

Rossi ist eine Organisation, deren Ausrichtung durch Nachhaltigkeit und Zuverlässigkeit geprägt ist. So kann den vielfältigen Markterfordernissen Rechnung getragen und gleichzeitig durch Ethik, Sicherheit und Umweltverträglichkeit unsere gemeinsame Zukunft gesichert werden.

Tools und Prozesse

Im Fokus der Entwicklung stehen die kontinuierlichen Investitionen in neue Tools und schlanke Prozesse. Unser Team aus Fachkräften aus verschiedenen Bereichen entwickelt laufend die effizienten Lösungen, um ständig den Marktanforderungen ständig voraus zu sein.

Technischer Kundendienst

Die hochqualifizierten Techniker sorgen weltweit für einen schnellen und effizienten Kundendienst und stehen den Kunden in jeder Phase des Projekts unterstützend zur Seite.

Digitaler Support

Das Rossi for You-Portal steht den Kunden 24/7 zur Verfügung. Dort können mit einer Reihe digitaler Tools in Echtzeit das Tracking von Bestellungen durchgeführt, auf das Download von Rechnungen, Ersatzteilzeichnungen und anderer Dokumentation zugegriffen werden, sowie der telefonische Support-Service kontaktiert werden.

Erfahrung

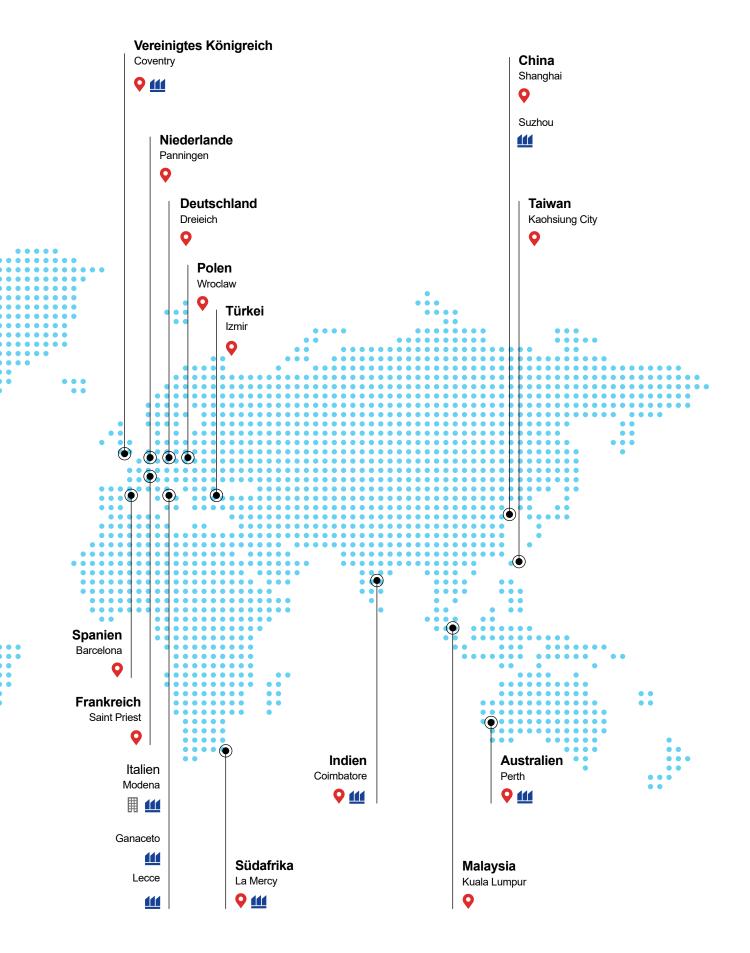
Rossi kann auf eine 70-jährige, von Erfolg geprägte Firmengeschichte zurückschauen. Daraus entsteht die täglich neue Möglichkeit, auf die Anforderungen und Wünsche aller Kunden weltweit individuell und zielgerichtet einzugehen.

Globale Präsenz Lokaler Service

Lokaler After-Sales

und Kundenservice, Anwendungstechnik, Vertrieb und Ersatzteile

15 Niederlassungen*

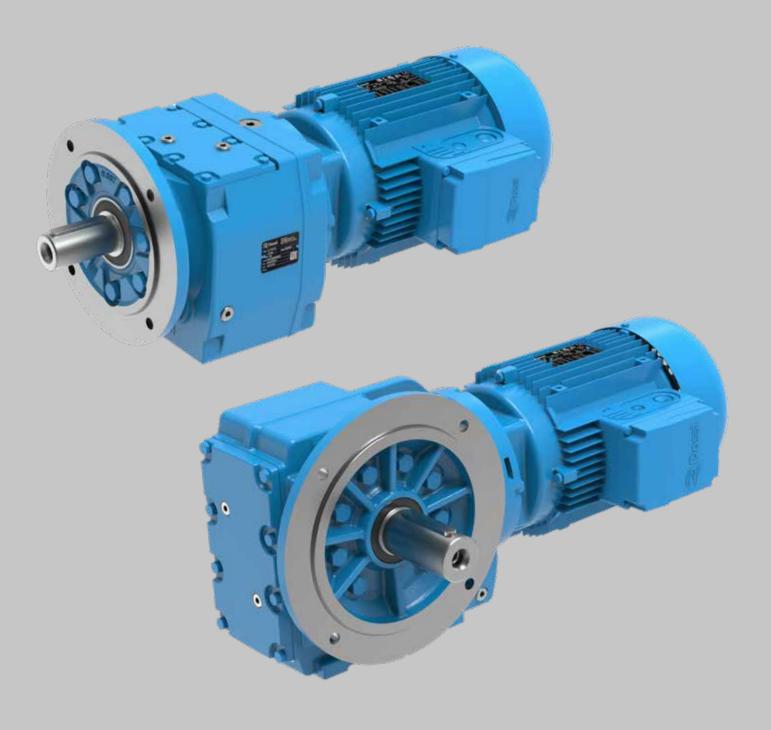

Internationales Vertriebsnetz*

Mit diesem engmaschigen Netz an Niederlassungen, Vertriebs- und Servicepartnern auf internationaler Ebene ist Rossi von der Planungsphase bis zum Aftersales-Service stets an Ihrer Seite: ein zuverlässiger und flexibler Partner überall vor Ort.

Rossi for You ist die digitale Webpage, die Ihnen täglich rund um die Uhr zur Verfügung steht, um den aktuellen Stand von Bestellungen und Lieferungen zu checken, Dokumente herunterzuladen oder direkte Unterstützung anzufordern.

*Kontakte auf www.rossi.com

Vereinigte Staaten von Amerika Suwanee, GA **Brasilien** Cordeiropolis, SP


Produktübersicht

Sektioninhalt

2.1	Eigenschaften und Vorteile	12
2.2	Elektromotoren	14
2.3	Frequenzumrichter	15
2.4	Produktreihe	16

Eigenschaften und Vorteile

Völlig austauschbar

Plug&Play. Keine Umstrukturierungskosten

100% made in EU

Höchste Qualität, minimale Wartung

Erhöhte Leistungen und Zuverlässigkeit

DIN/ISO 6

Energiesparung, minimaler Schallpegel und reduziertes Winkelspiel

Elektromotoren IE3

Premium Efficiency

Hohe Qualität

Lebenslange Schmierung. Kein Ölaustritt dank der Art der Dichtungen

Garantierte Sauberkeit durch abgerundete Formen und glatte Oberfläche des Gehäuses

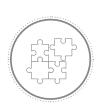
Bis zu 12% höher als der Referenzstandard

Weitere Vorteile

- Höherer Wert für den Kunden
- Kurze und garantierte Lieferzeiten
- 3-Jahre Garantie

Elektromotoren

- Standard- und Bremsmotoren
- Klasse IE3 der internationalen Energieeffizienz-Norm.
 (IEC 60034-30) > 0,75 kW
- Klasse IE2 der internationalen Energieeffizienz-Norm (IEC 60034-30) < 0,55 kW
- · Mehrspannung, 2, 4 und 6-polig
- · Gehäusen aus Alluminium
- Beidseitige Kabeleinführung möglich
- Motor-Isolationsklasse F, Übertemperaturklasse B


ÜBEREINSTIMMUNG

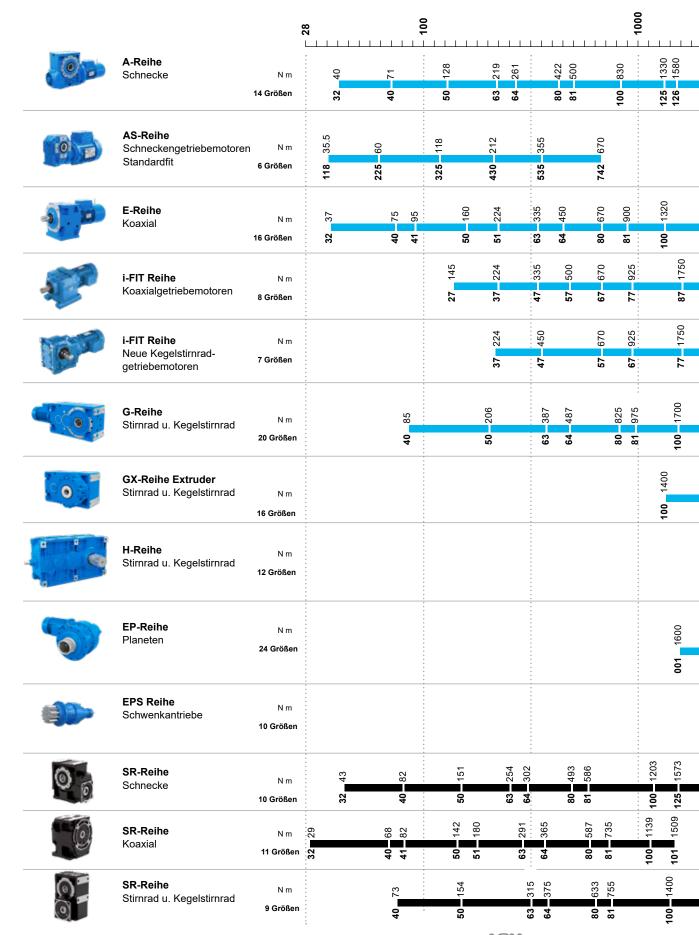
- Lauftest
- c Mus Motoren nach UL
- Maschinenrichtlinie 2006/42/EG
- RoHS-Richtlinie 2011/65/EG
- «ErP»-Richtlinie 2009/125/EG

SCHUTZ/LACKIERUNG

- Lack RAL 5010 C3 serienmäßig (harte, glatt haftende Farbe)
- IP 55

OPTIONEN

- Isolationsklasse H
- Thermistor-Thermofühler PTC
- Bimetall-Thermistoren
- · Motor mit Anschlüssen
- Stillstandheizung
- Fremdkühlung (IC 416)
- Regenschutzdach
- · Beidseitig vorstehende Welle
- sin/cos-Inkrementaldrehgeber
- · Alternative Lackierung
- Alternative Schutzarten IP 56 ... IP 66


Frequenzumrichter

- Max Überlastungen: bis zu 200%
- · Maximale Überlastfähigkeit ohne Sensoren
- · Flexibilität bei der Motor- oder Wandmontage
- · Vollständig "Plug & Play"
- Umfasst Selbstoptimierung, Programmierung und Software-Updates
- Erfüllt die Klasse IE2, ECODESIGN EN 50598
 IEC/EN 60034-30-1 und die Ecodesign-Richtlinie gemäß IEC 61800-9-2
- Inbetriebnahme, Fernüberwachung und -diagnose, Bluetooth, App und Sicherheit (STO)
- Kommunikation und Verbindung zwischen mehreren Frequenzumrichtern
- · Erweiterte Field buses-Reihe
- Die große Auswahl an Optionen, Komponenten und das Designkonzept garantieren höchste Zuverlässigkeit und Vibrationsfestigkeit. Staub- und spritzwassergeschützt (IP 65).

2.4 Produktreihe

ો<u>શિ</u>દે

Zeichen und Maßeinheiten

Sektioninhalt

3.1	Zeichen und Maßeinheiten	20
3.2	Bildsprache	22

3.1

Zeichen und Maßeinheiten

Symbole	Beschreibung	Maßeinheit SI
fs	Betriebsfaktor	
$f_{_T}$	Wärmefaktor	
Н	Höhe	[m]
IP	Schutzart	
J	Trägheitsmoment (Massen-)	[kg m²]
М	Drehmoment	[N m]
n	Drehzahl	[min ⁻¹]
р	Gewicht	[kg]
Р	Leistung	[kW]
S1S10	Betriebsart	
Т	Temperatur	[°C]
t	Zeit	[s]
V	Geschwindigkeit	[m/s]
Z	Anzahl der Starts pro Stunde	[Anl/h]
	Getriebe	
η	Wirkungsgrad	
η_{s}	statischer Wirkungsgrad	
F_{r1}	Radialbelastungen auf schnelllaufender Welle	[N]
F_{r2}	Radialbelastungen auf langsamlaufender Welle	[N]
F _{a1}	Axialbelastungen auf schnelllaufender Welle	[N]
F _{a2}	Axialbelastungen auf langsamlaufender Welle	[N]
i	Übersetzung	
L_{h}	Lagerlebensdauer	[h]
M _{N1}	Nenndrehmoment auf schnelllaufender Welle	[N m]
M_{N2}	Nenndrehmoment auf langsamlaufender Welle	[N m]
M_1	Drehmoment auf schnelllaufender Welle	[N m]
M_2	Drehmoment auf langsamlaufender Welle	[N m]
M _{2max}	Max Drehmoment auf langsamlaufender Welle	[N m]
M _s	Anzugsmoment der Befestigungsschrauben	[N m]
n_1	Drehzahl der schnelllaufenden Welle	[min ⁻¹]
n_2	Drehzahl der langsamlaufenden Welle	[min ⁻¹]
P_{N1}	Nennleistung auf der schnelllaufenden Welle	[kW]
$P_{_{N2}}$	Nennleistung auf der langsamlaufenden Welle	[kW]
P_{τ}	Wärmeleistung	[kW]
$P_{\scriptscriptstyle TN}$	Nennwärmeleistung	[kW]
P_1	Leistung auf der schnelllaufenden Welle	[kW]
P_{2}	Leistung auf der langsamlaufenden Welle	[kW]

Symbole	Beschreibung	Maßeinheit SI
	Motor	
cosφ	Leistungsfaktor	
C _{max}	Max Abnutzung der Bremsscheibe	[mm]
η	Motorwirkungsgrad	
f	Versorgungsfrequenz	[Hz]
I _N	Nennstromstärke des Motors	[A]
I _s	Anlaufstrom des Motors	[A]
J_{o}	Motormassenträgheitsmoment	[kg m²]
$M_{_{ m S}}$	Anlaufdrehmoment, bei Direkteinschaltung	[N m]
M _{max}	Höchstdrehmoment, bei Direkteinschaltung	[N m]
M_{N}	Nenndrehmoment des Motors	[N m]
M _{fmax}	Maximales Bremsmoment	[N m]
M_{f}	Eichbremsmoment	[N m]
$n_{_{N}}$	Nennmotordrehzahl	[min ⁻¹]
P_{N}	Nennmotorleistung	[kW]
t _a	Anlaufzeit	[s]
$t_{_{f}}$	Bremszeit	[s]
t,	Bremsankerlüftzeit	[ms]
t_2	Bremsverzug	[ms]
t _{2cc}	Bremsverzug mit Gs-Gleichrichter	[ms]
U	Versorgungsspannung	[V]
$W_{_{1}}$	Reibungsarbeit für 1 mm Stärkeverlust der Bremsscheibe	[MJ/mm]
W _{max}	Max Reibungsarbeit bei jedem Bremsvorgang	[J]

3.2

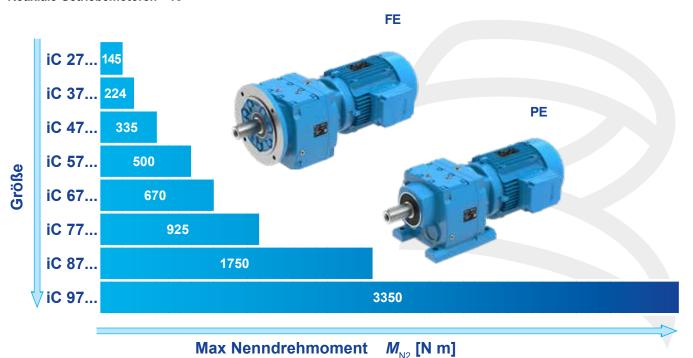
Bildsprache

Bildzeichen	Beschreibung	Bildzeichen	Beschreibung
p.	siehe Seite	∰ kg	Gewicht (ohne Öl)
<u></u>	Achtung	0	Ölmenge
•	Schraube mit Entlüfter	2	iC - 2 Reduzierungsstufen
	Ölstandschraube	3	iC - 3 Reduzierungsstufen
	Ölablassschraube	3	iO - 3 Reduzierungsstufen
	Schraube mit Entlüfter (unsichtbar) (Nicht-Antriebsseite)	6	siehe Abschnitt Motor
	Ölstandschraube (unsichtbar) (Nicht-Antriebsseite)	♠	siehe Abschnitt Motor-Adapter
	Ölablassschraube (unsichtbar) (Nicht-Antriebsseite)	Öç ⇒	siehe Abschnitt geometrische Kupplungen
iC	iFIT-Koaxiale Getriebemotoren		
iO	iFIT-Kegelstirnradgetriebemotoren		

Leerseite

Eigenschaften des Produkts

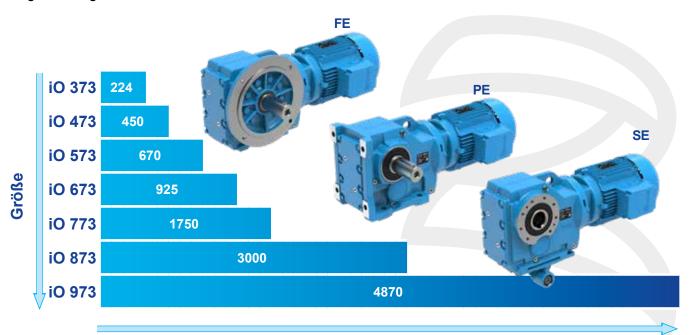
Sektioninhalt


4.1	Allgeme	eine Eigenschaften	26
	4.1.1	Getriebe	27
	4.1.2	Drehstrom-Elektromotor	28
4.2	Betrieb	sbedingungen	29
	4.2.1	Betriebstemperatur	29
	4.2.2	Aufstellungshöhe	29
	4.2.3	Betriebsart	30
	4.2.4	Frequenz 60 Hz	31
	4.2.5	Drehzahl	31
	4.2.6	Schallpegel	31
	4.2.7	Zugänglichkeit und Wärmeableitung	31
	4.2.8	Gewichte	31
	4.2.9	Reduziertes Spiel	31
	4.2.10	Dichtungen zur langsamlaufenden Welle	31
4.3	Oberflä	chenschutz	32
4.4	Lageru	ng und Aufbewahrung	33

ifik

4.1

Allgemeine Eigenschaften


Koaxiale Getriebemotoren - iC

		iC 27	iC 37	iC 47	iC 57	iC 67	iC 77	iC 87	iC 97
Durchmesser der langsamlauf. Welle	[mm]	25	25	30	35	35	40	50	60
Achshöhe (Bauart PE)	[mm]	90	90	115	115	130	140	180	225
Flanschdurchmesser B5 (Bauart FE)	[mm]	120160	120200	140200	160250	200, 250	250, 300	300, 350	350, 450
Maximales Nenndrehmoment	[N m]	145	224	335	500	670	925	1750	3350
Maximale Nennradialbelastung	[N]	4230	4940	5420	7100	6980	9900	16900	19800

- **Höchste Austauschbarkeit** (Achshöhe, langsamlaufendes Wellenende, Fußabmessungen und Befestigungsbohrungen, Flanschen), Leistungen, Ausführungen
- normalisierte Motoren nach IE3, IE2;
- Fußbefestigung (integrierte Füße am Getriebegehäuse) oder Flanschbefestigung (bis zu 4 Größen pro Getriebegröße);
- · Getriebe-Monoblockgehäuse aus Gusseisen, erhöhte Steifheit und Maßgenauigkeit;
- langsamlaufende Welle (Lager und Welle) reichlich dimensioniert für hohe Belastbarkeit des Wellenendes;
- Hohe Fertigungsqualität;
- Erhöhte Leistungen und Zuverlässigkeit
- Kompakte Motoren, nach Präzisionsklasse, auch als Bremsversion, geeignet für Anwendung mit Frequenzumrichter.

Kegelstirnradgetriebemotoren - iO

Max Nenndrehmoment M_{N2} [N m]

		iO 373	iO 473	iO 573	iO 673	iO 773	iO 873	iO 973
Durchmesser vorständ. I.I. Welle	[mm]	25	30	35	40	50	60	70
Durchmesser I.I. Hohlwelle	[mm]	30	35	40	40	50	60	70
Achshöhe (Bauarten PE, SE)	[mm]	100	112	132	140	180	212	265
Flanschdurchmesser B5 (Bauart FE)	[mm]	160	200	250	250	300	350	450
Max Nenndrehmoment	[N m]	224	450	670	925	1750	3000	4870
Max Nenn-Radialbelastung	[N]	5640	5920	7630	12300	16100	27300	40000

4.1.1 Getriebe

Baumerkmale:

- Monoblockgehäuse aus Gusseisen 250 UNI ISO 185 mit Versteifungsrippen und erhöhter Schmiermittelkapazität;
- Kugel- oder Kegelrollenlager zur langsamlaufenden Welle (auf Anfrage für Größen ≥ iO 47 mit langsamlaufender Hohlwelle) derart dimensioniert, um schwere Belastungen auf dem langsamlaufenden Wellenende standzuhalten
- Ritzel der Enduntersetzung mit drei Lagerungen (per grandezze ≥ iC 57) um die besten Einsatzbedingungen zu gewährleisten (keine überhängenden Räder, maximale Steifigkeit und Überlastung, maximale Geräuschlosigkeit);
- Ritzel der Erstuntersetzung durch Interferenz und Passfeder direkt auf Motorwellenende gekeilt;
- Schrägstirnrad- und -kegelstirnradpaaren mit geschliffenem Profil für die höchste Belastbarkeit, gleichmäßiger und ruhiger Lauf;

٤٤٤

- auf Zahnfuß-und Zahnflankentragfähigkeit (Grübchenbildung) nach ISO berechnete Belastbarkeit des Zahnradgetriebes.
- Ölbadschmierung; jede Größe ist mit Synthetikölfüllung auf Polyglykolen (PAG)-Basis, für Lebensdauerschmierung;
- Metallschrauben (Einfüllschraube mit Ventil; Ablassschraube, Standschraube);
- Lackierung: Außenschutz mit Zweikomponenten-Acryl-Lack auf Wasserbasis, geeignet für normale industrielle Umgebungen (Korrosionsklasse C3 ISO 12944-2); Farbe Blau RAL 5010 DIN 1843; Innenschutz mit Lack, der für die Beständigkeit gegen synthetische Öle geeignet ist.

4.1.2 Drehstrom-Elektromotor

Die Abmessungen und die Massen der Getriebemotoren dieses Katalogs beziehen sich auf Standard- und Bremsmotoren vom Kat. TX.

Baumerkmale:

- kompakter geschlossener asynchroner Käfigläufer-Drehstrommotor mit Außenbelüftung;
- Schutzart IP 55, Isolationsklasse F, Übertemperatur Klasse B;
- Leistung gilt bei Dauerbetrieb S1 und bezogen auf Nennspannung und -frequenz, Umgebungstemperatur +40 °C und Höhe 1 000 m;
- geeignet für Frequenzumrichterbetrieb (reichlich elektromagnetische Dimensionierung, Elektroblech mit niedrigen Verlusten, Phasentrennung, usw.);
- umfangreiche Reihe von Ausführungen für jede Anfrage: Fremdaxiallüfter, Fremdaxiallüfter und Drehgeber, usw.
- Lackierung: Aussenschutz mit wasserlöslichem 2K-akryl Endanstrich für normale Anwendung in Industriestätten geeignet (Korrosionsklasse C3 ISO 12944-2); Farbe blau RAL 5010 DIN 1843.

Baumerkmale des Bremsmotors:

- solide Bauweise, um den Bremsbeanspruchungen standuzhalten; maximale Geräuscharmut;
- elektromagnetische Federbremse mit Gleichstrom; direkt von Klemmenbrett gespeist;
- separate Bremsversorgung vom Netz vorgesehen;
- dem Motordrehmoment proportioniertes Bremsmoment (normalerweise $Mf \approx 2 M_{\odot}$);
- hohe Schalthäufigkeit;
- schnelles und genaues Anhalten;
- Handlüftung durch Hebel mit automatischer Rückholung (auf Anfrage); abnehmbare Hebelstange.

Für andere Eigenschaften und Details s. gesonderte Unterlagen Kat. TX.

Spezifische Normen für Elektromotoren:

- Nennleistungen und -abmessungen nach CENELEC HD 231 (IEC 72-1, CNR-CEI UNEL 13117-71 und 13118-71, DIN 42677, NF C 51-120, BS 5000-10 und BS 4999-141) für Bauformen IM B5, IM B14 und deren Ableitungen;
- Nennleistungen und Betriebseigenschaften nach CENELEC EN 60034-1 (IEC 34-1, CEI EN 60034-1, DIN VDE 0530-1, NF C51-111, BS EN 60034-1);
- Schutzarten nach CENELEC EN 60034-5 (IEC 34-5, CEI 2-16, DIN EN 60034-5, NF C51-115, BS 4999-105);
- Bauformen nach CENELEC EN 60034-7 (IEC 34-7, CEI EN 60034-7, DIN IEC 34-7, NF C51-117, BS EN 60034-7);
- Schallpegel nach CENELEC 60034-9 (IEC 34.9, DIN 57530 pt. 9);
- Auswuchten und Vibrationsgeschwindigkeit (Vibrationsgrad nach Normklasse N) nach CENELEC HD 53.14 S1 (IEC 34-14, ISO 2373 CEI 2-23, BS 4999-142); die Motoren werden mit im Wellenende eingesteckter halber Passfeder
- Kühlung nach CENELEC EN 60034-6 (CEI 2-7, IEC 34-6): Standardtyp IC 411; Typ IC 416 für Sonderausführung mit Fremdaxiallüfter.

4.2

Betriebsbedingungen

4.2.1 Betriebstemperatur

Getriebe

Die Getriebe sind für den Betrieb in einem Umgebungstemperaturbereich von 0 °C / +40 °C (mit Spitzen bis zu -20 °C/+50 °C) geeignet.

Der Betrieb außerhalb dieses Bereichs mit einer Mindesttemperatur von -40 °C und einer Höchsttemperatur von +60 °C muss in Abhängigkeit von den spezifischen Betriebsbedingungen, der Art des Betriebs, der Art des Schmiermittels, der Art der Dichtungen und des Kühl-/Heizsystems (sofern möglich) bewertet werden; Rossi S.p.A. kontaktieren.

Motoren

Die Motoren der HB-Serie sind für den Betrieb in einem Umgebungstemperaturbereich von -15 °C / +40 °C geeignet. Ein Betrieb außerhalb dieses Bereichs ist möglich, wenn bestimmte Vorsichtsmaßnahmen getroffen werden: Rossi kontaktieren.

Die Katalogangaben beziehen sich auf eine Betriebstemperatur von 25 °C (Seiten 53 und 54).

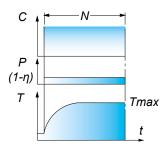
Bei Umrichterantrieben sind die höheren thermischen Belastungen zu berücksichtigen, denen die Motorwicklungen ausgesetzt sein können.

Wenn notwendig, Rossi S.p.A. kontaktieren.

4.2.2 Aufstellungshöhe

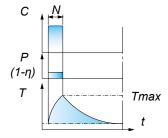
Die Aufstellungshöhe beeinflusst die Wirksamkeit der Wärmeabfuhr durch Konvektion; die Wärmeabfuhrkapazität nimmt mit zunehmender Aufstellungshöhe ab.

Die Katalogdaten beziehen sich auf eine maximale Höhe von 1000 m.



4.2.3 Betriebsart

Dauerbetrieb (S1)


Betrieb bei konstanter Last einer Dauer, die dem Motor erlaubt, das thermische Gleichgewicht zu erreichen.

Bezeichnung S1

Kurzzeitbetrieb (S2)

Betrieb bei gleichmäßiger Belastung einer bestimmter Dauer, die jedoch nicht genügend lang ist, damit das Wärmegleichgewicht hergestellt wird. Daran schließt sich eine Stillstandzeit an, in der sich der Motor auf die Umgebungstemperatur abkühlen kann . Bezeichnung S2 + Zeit N (minimal)

Aussetzbetrieb (S3)

Betriebsart, in welcher eine Reihe identischer Takte abläuft. Sämtliche Takte beinhalten eine Betriebszeit bei gleichmäßiger Belastung und eine Stillstandzeit. Weiterhin, in dieser Betriebsart dürfen die Stromspitzenwerte beim Anlauf die Motorerwärmung nur geringfügig beeinflussen.

Bezeichnung S3 + Einschaltdauer

Tmax

Einschaltdauer = N/(N+R)·100 [%]

wobei

N ist die Betriebszeit bei gleichmäßiger Belastung, R ist die Stillstandzeit Bei Werten von N+R > 10 min Rossi S.p.A. kontaktieren

Bei Betriebsarten S2 ... S10 kann die Motorleistung gemäß folgender Tabelle erhöht werden; das Anlaufdrehmoment bleibt unverändert.

Betrieb			Motorgröße			
			63 90	100 132	160 315	
	Betriebsdauer	90 min	1	1	1,06	
00		60 min	1	1,06	1,12	
S2		30 min	1,25	1,18	1,25	
		10 min	1,25	1,25	1,32	
		60%	1,12			
00	Einschaltdauer	40%	1,18			
S3		25%	1,25			
		15%	1,32			
S4 S10			Rossi S.p.A. kontaktieren			

4.2.4 Frequenz 60 Hz

Die **Motoren** bis zur Größe 132 gewickelt bei 50 Hz können bei 60 Hz versorgt werden; dabei auf verschiedene Nenneigenschaften achten, s. spesifische Dokumentation Kat. TX .

4.2.5 Drehzahl

Die Drehzahlen der langsamlaufenden Welle der im Katalog aufgeführten Getriebemotoren werden auf der Grundlage der Nenndrehzahl des HB-Motors unter Nennbetriebsbedingungen und der Übersetzung des Getriebes bestimmt. Die tatsächliche Drehzahl kann in Abhängigkeit von der Last, den tatsächlichen Betriebsbedingungen und dem Stromversorgungssystem von diesem Wert abweichen.

4.2.6 Schallpegel

Normalwerte von Schallleistungspegel L_{WA} für Getriebemotoren dieses Katalogs bei Nennbelastung und Antriebsdrehzahl sind nach den Grenzen laut VDI 2159 bez. des Getriebes und laut EN 60034 bez. des Motors.

4.2.7 Zugänglichkeit und Wärmeabgabe

Die Getriebemotoren benötigen ausreichende Luft für die Kühlung des Getriebes und des Motors (dies gilt besonders für die Lüfterseite des Motors).

Darauf achten, dass der Kühlluftdurchgang nicht verstopft ist, das Getriebe nicht in der Nähe von Heizquellen mit Einwirkung auf Kühl- und Getriebelufttemperatur (für Ausstrahlung) aufgestellt wird, genügend Luft zu und abströmen kann, überhaupt Einsätze ohne geregelte Wärmeabgabe vermieden werden.

Sorgen Sie außerdem für eine angemessene Entfernung oder Abschirmung hitzempfindlicher Bauteile (Motor, Bremse, Motorumrichter, elektronische Bauteile usw.) von den heißen Oberflächen der angetriebenen Maschine und stellen Sie sicher, dass ausreichend Platz für die Zugänglichkeit für Wartungsarbeiten vorhanden ist.

4.2.8 Gewichte

Die im Katalog angegebenen Gewichte beziehen sich auf Getriebemotoren ohne Schmieröl. Die aktuellen Gewichte können je nach Größe, Getriebe, Übersetzung, Motor und eventuellem Zubehör oder Sonderausführungen variieren.

4.2.9 Reduziertes Spiel

Für Größen ≥ iC 37 kann der Getriebemotor mit reduziertem Spiel geliefert werden.

Die Werte sind im Abschnitt 9.2 in den "Tabellen zur geometrischen Kopplung" angegeben und beziehen sich auf die langsamlaufende Welle bei blockierter schnelllaufender Welle.

Sie gelten ohne Lasteinwirkung (max. 0,01 der Nennlast des Getriebes), bei Umgebungstemperatur (25 °C) und mit einer Toleranz von ± 2 arc min.

Wenn der Wert nicht angegeben wird, ist die Option des reduzierten Spiels nicht verfügbar.

4.2.10 Dichtungen zur langsamlaufenen Welle

Für aggressive Umgebungsbedingungen oder besonders harte Betriebsbedingungen ist die Option "Dichtungsringe (Getriebe und Motor) in fluorierter Mischung" erhältlich.

Bei angeflanschten Getrieben Größe ≥ iC 37 und bei angeflanschten Getrieben mit Vollwelle Größe ≥ iO 473 ist auch die Option "Doppelte Wellenabdichtung zur langsamlaufenden Welle" möglich .

2635-23.03-1 Pills

4.3

Oberflächenschutz

Die Getriebemotoren sind äusserlich mit Lackierung mit 2K-Acryl-Lack auf Wasserbasis geschutzt, geeignet für normale industrielle Umgebungen (Korrosionsklasse C3 ISO 12944-2; Farbe blau RAL 5010).

Andere Lackierungen und Schutzarten sind auf Anfrage erhältlich, wie in der nachstehenden Tabelle aufgeführt.

	Anwendungs bereich	Eigenschaften	Korrosions- klasse	Dauerhaft- klasse	Beschreibung der Behandlung	Dicke Behandlung	Code
			ISO 12944-2	ISO 12944-2		μm	
in aggressiv		Witterung und	C4	Geringe	2-K-Epoxy-Grundierung 2-K-polyurethanischer wasserlöslicher Decklack mit mit Polyurethan-Acrylharzen	150	1HRAL5010 (blau)
	Anwendungen in aggressiven Umgebungen			Mittel	2-K-Epoxy-Grundierung (2 Schichten) 2K-polyurethanischer wasserlöslicher Decklack mit mit Polyurethan-Acrylharzen	200	2HRAL5010 (blau)
				Hoch	2-K-Epoxy-Grundierung (4 Schichten) 2K-polyurethanischer wasserlöslicher Decklack mit mit Polyurethan-Acrylharzen	300	3HRAL5010 (blau)
im Freie bei salzig	Anwendungen	Hervorragende Beständigkeit gegen Witterung und aggressive Substanzen Anwendungen im Freien bei salziger Umgebung	C5 - M	Mittel	Sandeln S	300	2IRAL5010 (blau)
	im Freien bei salziger Umgebung			Hoch	 Sandeln 2K-Rostschutz-Grundierung mit Zinkphosphaten Dichtung mit Polyurethan-Dichtstoff 2-K-Epoxy-Grundierung 2K-polyurethanischer Decklack mit Polyurethan-Acrylharzen 	400	2KRAL5010 (blau)
Industriestätten m	Hervorragende Beständigkeit gegen Witterung und aggressive Substanzen	Beständigkeit gegen Vitterung und aggressive	Mittel	Sandeln S	300	2LRAL5010 (blau)	
	agressiven Umgebung und in	Anwendungen im Freien in einer chemisch aggressiven Umgebung (Düngemittel, usw.)	C5 - I	Hoch	 Sandeln 2K-Rostschutz-Grundierung mit Zinkphosphaten Dichtung mit Polyurethan-Dichtstoff 2-K Epoxy-Grundierung 2-K-polyurethanischer wasserlöslicher Decklack mit Epoxidharzen 	400	2YRAL5010 (blau)

⁽¹⁾Verfügbar bei Größen **≥ 47.**

²⁾ Auf den Motoren nicht verfügbar.

4.4

Lagerung und Aufbewahrung

Rossi S.p.A. Getriebemotoren müssen in einer geschlossenen Umgebung gelagert werden, in der sie vor Sonnenlicht und korrosiven Stoffen geschützt sind.

Der Lagerraum muss sauber, trocken (relative Luftfeuchtigkeit < 50 %), es dürfen keine übermäßigen Vibrationen auftreten ($v_{eff} \le 0.2 \text{ mm/s}$), damit die Lager nicht beschädigt werden.

Die Umgebungstemperatur muss zwischen 0 und 40 °C liegen; Spitzenwerte von bis zu ± 10 °C sind zulässig.

Im Falle von anderen Umgebungsbedingungen, Rossi S.p.A. kontaktieren.

Die Getriebe und Getriebemotoren müssen entsprechend der in der Bestellung und auf dem Typenschild angegebenen Bauform aufgestellt werden. **Einheiten nicht stapeln.**

Lösen Sie auf keinen Fall die geschlossenen Stopfen oder betätigen Sie den Entlüftungsstopfen vor der Inbetriebnahme.

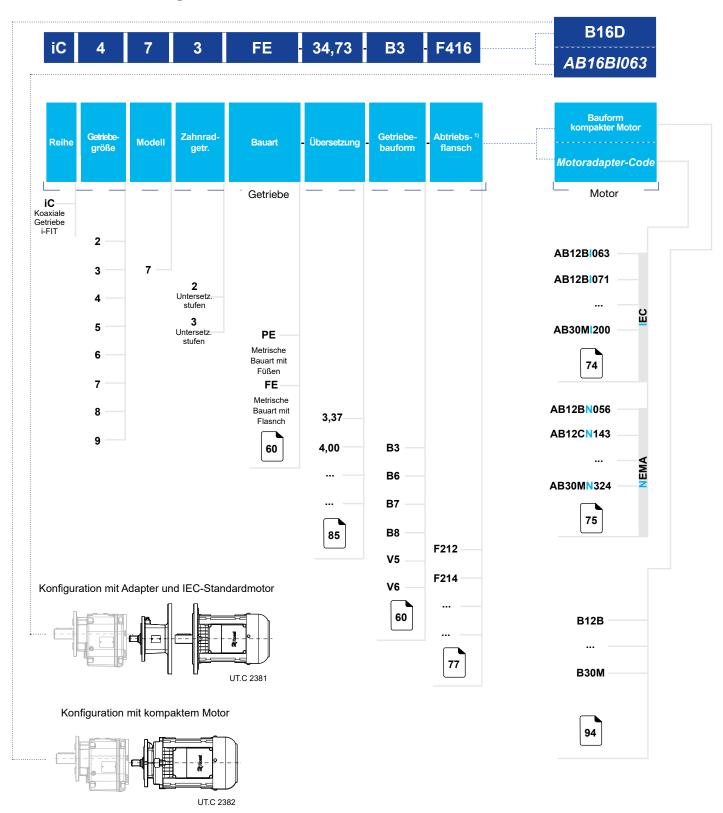
Bei einer Lagerdauer von 12 bis 24 Monaten empfehlen wir die Option "Langzeitlagerung":

- · Lieferung des Getriebes ohne Ölfüllung;
- Schutz des Innenvolumens des Getriebes durch Auftragen eines VCI-Schmiermittels;
- Auftragen einer speziellen Korrosionsschutz-Ölschicht auf alle unlackierten Außenteile (Wellen, Füße, Flansche), einschließlich verzinkter Teile (Schrauben, Muttern, Unterlegscheiben, Ringschrauben usw.);
- Anbringung eines für die Art der Schutzbehandlung spezifischen Klebeetiketts;
- · Einzelverpackung mit einem versiegelten VCI-Beutel.

Für längere Zeiträume Rossi S.p.A. kontaktieren.

Bezeichnung

Sektioninhalt

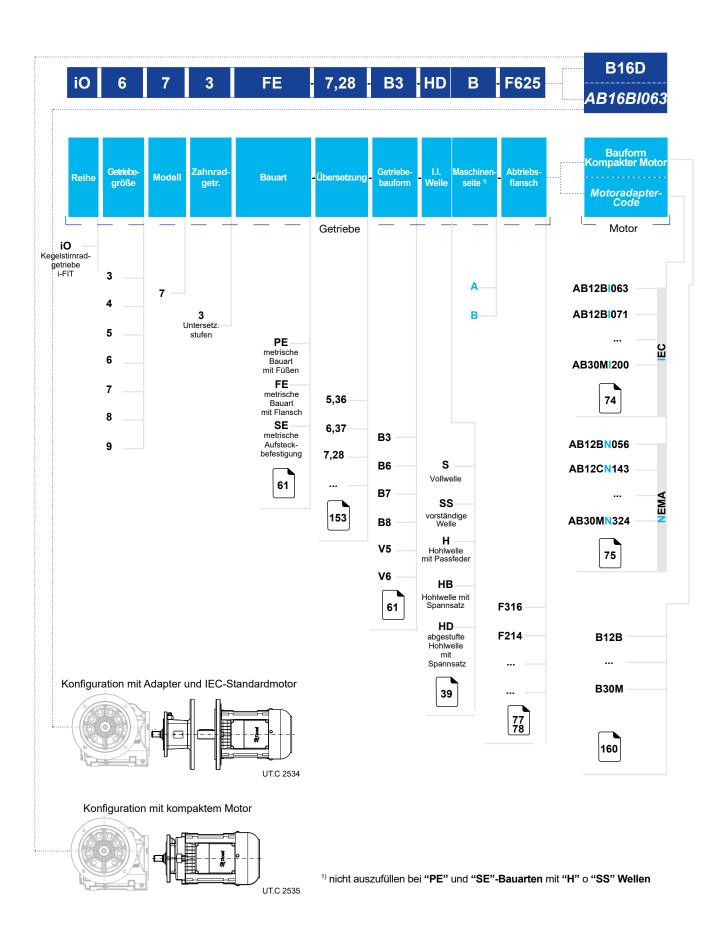

5.1	Kodier	ung	36
	5.1.1	Bezeichznung Koaxiale Getriebemotoren - iC	36
	5.1.2	Bezeichnung Kegelstirnradgetriebemotoren - iO	38
	5.1.3	Bauart und Maschinenseite - iO	39
	5.1.4	Motorbezeichnung	40
	5.1.5	Position des Motorklemmenbretts	40
	5.1.6	Kodierung der Getriebe-Optionen	41
	5.1.7	Kodierung der Motor-Optionen	41
	5.1.8	Bezeichnungsbeispiele Koaxiale Getriebemotoren - iC	42
	5.1.9	Bezeichunungsbeispiele Kegelstirnradgetriebemotoren - iO	43
5.2	Typens	childsangaben	44
	5.2.1	Getriebe-Typenschild	44
	5.2.2	Motor-Typenschild	44

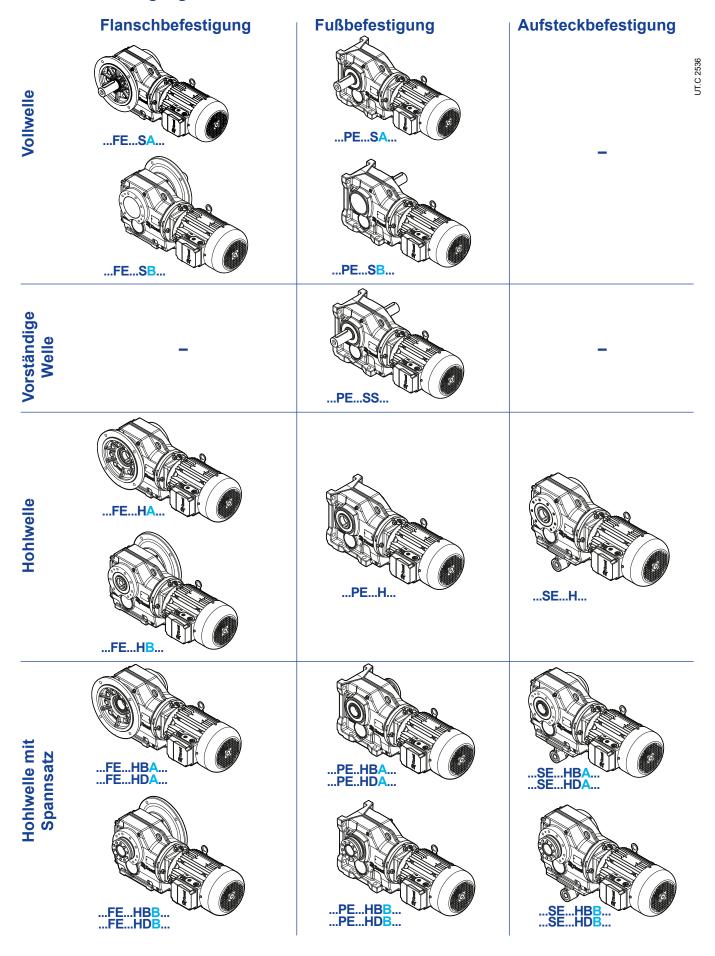
કાજા

5.1

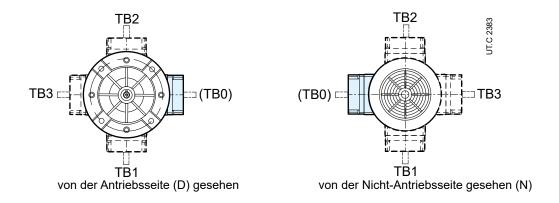
Kodierung

5.1.1 Bezeichnung Koaxiale Getriebemotoren iC


¹⁾ nur bei Ausführung mit "FE"-Flansch auszufüllen


Leerseite

5.1.2 Bezeichnung Kegelstirnradgetriebemotor iO


5.1.3 iO-Befestigung und Maschinenseite

5.1.4 Motorbezeichnung

НВ	3	Z	90S	- 4	230.400	50	- B1	6D -	TB2 ⁽¹⁾
Reihe	Wirkungs- grad klasse	Eingebaute Bremse	Motor- größe	Pol- anzahl	Versorgungs- spannung	Versorgungs frequenz	. —	IEC	Position des Klemmen- bretts
	2		00.4	2	000 400	50	2402	D.F.	TD4
нв —	Virkungsgrad IE2	z	63A 63B	4	400	50 —— 60 ——	B12B	B5	TB1 ——
١	3 — Wirkungsgrad IE3		71B	6			В30С		твз —
	212	215	212	212	212	212	94 160		

5.1.5 Position des Motorklemmenbretts

Die Motorbezeichnung ist mit Angabe der Motorklemmenkastenposition zu ergänzen, wenn sie von der vorgesehenen Standardposition abweicht TB0 (s. auch Seiten 64,65 für Koaxial iC und Seiten 66,67,68 für Kegelstirnrad iO). Der Handlüftungshebel (für Bremsmotor) hängt von der Position des Klemmenkastens.

Die Kabeleinführung liegt in der Verantwortung des Käufers: Der Klemmenkasten ist in das Motorgehäuse integriert und verfügt über einen beidseitigen Kabelzugang mit Sollbruchstellen (einer für das Netzkabel und einer für die Hilfsgeräte).

⁽¹⁾ Für die Position des Standard-Klemmenbretts TB0 ist keine Angabe in der Motorbezeichnung notwendig.

5.1.6 Kodierung der Getriebe-Optionen

Bez.	Beschreibung	Code	(Getriebegrößen
			iC	iO
(1)	Verstärkte Lagerung der langsamlaufenden Welle	SP2	≥ iC 47	≥ iO 473 H, HB, HD
(2)	Doppeldichtung auf I.I. Welle (nur bei Flanschausführung)	DT2	≥ iC 37FE	≥iO 473 FES
(3)	Dichtringe (Getriebe und Motor) in fluorierter Mischung	TV2	alle	alle
(4)	Sonderlackierungszyklus (Getriebe und Motor)	Seite 32	alle	alle
(5)	Reduziertes Spiel	GR	Seite 31	Seite 31
(6)	Universelle Bauform	вх	alle	alle
(7)	Typenschild aus Edelstahl (Getriebe und Motor)	NP316	alle	alle
(9)	Vorbereitet für "langfristige Lagerung"	LS	alle	alle
(10)	Position des Klemmenkastens abweicht von TB0	TB1, TB2, TB3	alle	alle
(11)	Drehmomentstütze	TA	_	SE
(12)	Scheibe zur I.I. Hohlwelle	R	_	Н

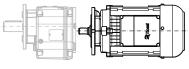
5.1.7 Kodierung der Motoroptionen

Bez.	Beschreibung	Code	НВ	HBZ
(1)	Sondermotorversorgung	_	•	•
(3)	Isolationsklasse H	,H	•	•
(8)	Kondenswasserablassbohrungen	,CD	•	•
(9)	Zusatztränkung der Wicklungen	,SP	•	•
(13)	Stillstandheizung	,S	•	•
(16)	Zweites Wellenende	,AA	•	•
(17)	Fremdaxiallüfter	,V	•	•
(18)	Fremdaxiallüfter und Drehgeber	,V ,E	•	•
(19)	Thermistor-Thermofühler (PTC)	,T15 ,T17	•	•
(20)	Bimetall-Thermofühler	,B15 ,B17	•	•
(21)	Regenschutzdach	,PP	•	•
(25)	Position des Handlüftungshebels weicht von der Standardposition ab (L)	,L1 ,L2 ,L3	_	•
(26)	Separate Gs-Bremsversorgung		_	•
(35)	Lüfter aus Leichtmetall	,VL	•	•
(36)	Drehgeber	,E1 ,E5	•	•
(42)	Motor nach UL zertifiziert	,UL	•	•
(47)	Ausführung für feuchte und korrosive Umgebung,	,UC	_	•
	Edelstahlbremsscheibe und -bolzen	,DB	_	•
(48)	Schutzart IP 56	,IP 56	_	•
(49)	Schutzart IP 65	,IP 65	_	•
(51)	Verstärkte Ausführung bei Frequenzumrichterversorgung (Gr. 160200)	,IR	•	•
(61)	Handdrehung	,MM	_	•
(62)	Vorbereitet für Drehgeber	,PE	•	•
(63)	Fremdaxiallüfter und vorbereitet für Drehgeber	,V ,PE	•	•
(64)	Schutzart IP 66	,IP 66	•	_

Für eine vollständige Beschreibung der Motoroptionen s. Kat. TX Motoren Reihe HB.

5.1.8 Bezeichnungsbeispiele Koaxiale Getriebemotoren iC

Beispiel 1: kompakter koaxialer Getriebemotor


iC 4 7 3 FE - 34,73 - B3 - F416 - B16D

- Getriebemotorgröße iC 47
- 3 Untersetzungsstufen
- Flanschausführung
- metrische Welle
- Übersetzung 34,73
- Getriebebauform B3
- Abtriebsflansch F416
- · kompakter Motor mit Bauform B16D

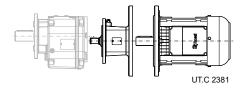
Die Bezeichnung des Kompaktmotors, der mit dem oben kodierten Getriebe kompatibel ist, lautet

- Bremsmotortyp HB, Wirkungsgrad IE3
- Motorgröße 90S
- Polzahl 4
- Versorgungsspannung 230-400 V bei 50 Hz
- kompakter Motor mit Bauform B16D
- Klemmenkasten-Position TB2

UT.C 2382

Beispiel 2: Koaxialer Getriebemotor mit IEC-Adapter

- · Getriebemotorgröße iC 47
- 3 Untersetzungsstufen
- Flanschausführung
- metrische Welle
- Übersetzung 34,73
- Getriebebauform B3
- Abtriebsflansch F416
- IEC-Standardmotor mit Adapter AB16DI090


Die Bezeichnung des IEC-Motors, der mit dem oben kodierten Getriebe kompatibel ist, lautet

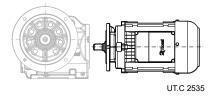
- Bremsmotortyp HB, Wirkungsgrad IE3
- Motorgröße 90S
- Polzahl 4
- Versorgungsspannung 230-400 V bei 50 Hz
- IEC-Motorbauform B5

⋜ Rossi

Klemmenkasten-Position TB2

5.1.9 Bezeichnungsbeispiele Kegelstirnradgetriebemotor iO

Beispiel 1: kompakter Kegelstirnradgetriebemotor

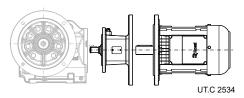

iO 5 7 3 FE - 19,34 - B3 - SA - F525 - B16D

- Kegelstirnradgetriebemotorgröße iO 57
- 3 Untersetzungsstufen
- Flanschausführung
- metrische Welle
- Übersetzung 19,34
- Getriebebauform B3
- I.I. Vollwelle S in Position A
- Abtriebsflansch F525
- kompakter Motor mit Bauform B16D

Die Bezeichnung des Kompaktmotors, der mit dem oben kodierten Getriebe kompatibel ist, lautet

- Bremsmotortyp HB, Wirkungsgrad IE3
- Motorgröße 90S
- Polzahl 4
- Versorgungsspannung 230-400 V bei 50 Hz
- kompakter Motor mit Bauform B16D
- Klemmenkasten-Position TB2

Beispiel 2: Kegelstirnradgetriebemotor mit IEC-Adapter

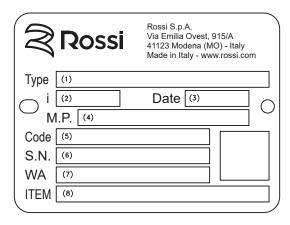


- Kegelstirnradgetriebemotorgröße iO 47
- · 3 Untersetzungsstufen
- Aufsteckbefestigung
- metrische Welle
- Ubersetzung 19,58
- Getriebebauform B3
- I.I. Hohlwelle mit Spannsatz HB in Position B
- IEC-Standardmotor mit Adapter AB16DI090

Die Bezeichnung des IEC-Motors, der mit dem oben kodierten Getriebe kompatibel ist, lautet

- Bremsmotortyp HB, Wirkungsgrad IE3
- Motorgröße 90S
- Polzahl 4
- Versorgungsspannung 230-400 V bei 50 Hz
- IEC-Motorbauform B5
- Klemmenkasten-Position TB2

5.2

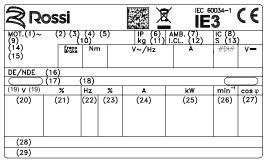

Typenschildsangaben

5.2.1 Getriebetypenschild

Das Getriebe ist mit einem eigenen Typenschild aus eloxiertem Aluminium versehen, auf dem die wichtigsten technischen Daten zur korrekten Identifizierung angegeben sind.

Das Schild darf nicht entfernt werden und muss intakt und lesbar bleiben.

Alle auf dem Typenschild angegebenen Daten müssen bei der Ersatzteilbestellung angegeben werden.


- (1) Getriebetyp
- (2) Übersetzung
- (3) Herstellungsdatum
- (4) Getriebebauform
- (5) Produkt-Code
- (6) Seriennummer
- (7) Produktionslos
- (8) Kundencode (1)

5.2.2 Motortypenschild

Jeder Motor ist mit einem Typenschild aus eloxiertem Aluminium versehen, auf dem die wichtigsten technischen Informationen zu den funktionalen und konstruktiven Merkmalen angegeben sind.

Das Schild darf nicht entfernt werden und muss intakt und lesbar bleiben.

Alle auf dem Typenschild angegebenen Daten müssen bei der Ersatzteilbestellung angegeben werden.

HB

- (1) Phasenanzahl
- (2) Motortyp
- (3) Größe
- (4) Polanzahl
- (5) Bezeichnung der Bauform
- (6) IP Schutzart
- (7) Umgebungstemperatur max
- (8) IC-Code
- (9) Produktionslos
- (10) Herstellungszweimonat u. -jahr und Seriennummer
- (11) Motormasse
- (12) Isolationsklasse I.CL.
- (13) Betrieb S...
- (14) Motorcode
- (15) Kundencode (1)

- (16) Lager
- (17) Etwaige zusätzliche Anmerkung
- (18) Etwaige zusätzliche Anmerkung
- (19) Phasenanschluss
- (20) Nennspannung
- (21) Spannungtoleranz
- (22) Nennfrequenz
- (23) Frequenztoleranz
- (24) Nennstrom
- (25) Nennleistung
- (26) Nenndrehzahl
- (27) Nennleistungsfaktor
- (28) Nennwirkungsgrad IEC 60034-2-1
- (29) Design Code
- (36) Betriebsfaktor fs

(1) Auf Anfrage

7	ossi		N N	: IE		((
MOT.(1)~ (9)	(2) (3)	(4) (5) 10)		AMB. (7) I.CL. (12)	IC (8) S (13)
(14)	Freno	Nm	V~/Hz	À	# D #	v=
(15)	(30)	(31)	(32)	(33)	(34)	(35)
DE/NDE	(16)					
	(17)	(18)				
(19) V (19)	%	Hz %	A	kW	min ⁻¹	cosφ
(20)	(21)	(22) (23)	(24)	(25)	(26)	(27)
(28)					1	
(29)						

HBZ

- (1) Phasenanzahl
- (2) Motortyp
- (3) Größe
- (4) Polanzahl
- (5) Bezeichnung der Bauform
- (6) IP Schutzart
- (7) Umgebungstemperatur max
- (8) IC-Code
- (9) Produktionslos
- (10) Herstellungszweimonat u.
 -jahr
 und Seriennummer
- (11) Motormasse
- (12) Isolationsklasse I.CL.
- (13) Betrieb S...
- (14) Motorcode
- (15) Kundencode (1)
- (16) Lager
- (17) Etwaige zusätzliche Anmerkung

- (18) Etwaige zusätzliche Anmerkung
- (19) Phasenanschluss
- (20) Nennspannung
- (21) Spannungtoleranz
- (22) Nennfrequenz
- (23) Frequenztoleranz
- (24) Nennstrom
- (25) Nennleistung
- (26) Nenndrehzahl
- (27) Nennleistungsfaktor
- (28) Nennwirkungsgrad IEC 60034-2-1
- (29) Design Code
- (30) Bremsgröße
- (31) Bremsmoment
- (32) Versorgung des Gleichrichters
- (33) Aufgenommener Bremsstrom
- (34) Gleichrichterzeichen
- (35) Gs-Nennspannung der Bremse

⁽¹⁾ A richiesta

Project Planning

₹Rossi

Sektioninhalt

6.1	Auswa	ન	48
	6.1.1	Auswahlangaben	48
	6.1.2	Auswahl der Getriebemotorgröße	48
	6.1.3	Nachprüfungen	49
	6.1.4	Überbelastungen beim Anlauf und Anhalten	49
	6.1.5	Betrieb mit Bremsmotor	50
	6.1.6	Betrachtungen über Motorleistung	50
6.2	Betrieb	sfaktor <i>f</i> s	51
6.3	Wirkun	gsgrad	52
6.4	Wärme	leistung <i>P</i> t	53
6.5	Radiall	pelastungen auf langsamlaufendem Wellenende	55
	6.5.1	Allgemeines	55
	6.5.2	Bestimmung der angewendeten Radialbelastung	55
	6.5.3	Zulässige Radialbelastung	55
	6.5.4	Zulässige Axialbelastung	56
	6.5.5	Radialbelastung nicht in der Mittellinie	56

2635-23.03-1

6.1

Auswahl

6.1.1 Auswahlangaben

Für die richtige Auswahl des Getriebemotors und des Antriebs sind folgende Informationen über die durchzuführende Anwendung erforderlich

Symbole	Beschreibung	Maßeinheit SI
n _{2min}	erforderliche Mindestdrehzahl der langsamlaufenden Welle	[min ⁻¹]
n _{2max}	maximale erforderliche Drehzahl der langsamlaufenden Welle	[min ⁻¹]
$P_{_{2-n2min}}$	Abtriebsleistung bei der minimalen Drehzahl	[kW]
$P_{2-n2max}$	Abtriebsleistung bei der maximalen Drehzahl	[kW]
$M_{2-n2 min}$	Abtriebsdrehmoment bei der minimalen Drehzahl	[N m]
$M_{2-n2 max}$	Abtriebsdremoment bei der maximalen Drehzahl	[N m]
$F_{_{a2}}$	Axialbelastungen auf langsamlaufender Welle	[N]
F_{r2}	Radialbelastungen auf langsamlaufender Welle	[N]
J	Trägheitsmoment (Massen-) Außen (-Kupplungen, angetriebene Maschine)	[kg m²]
$T_{_{Umg}}$	maximale und minimale Umgebungstemperatur	[°C]
Н	Aufstellungshöhe	[m]
S1, S2,	Betriebsart	[%]
z	Anzahl der Anläufe pro Stunde	[Anl./h]
f	Versorgungsfrequenz	[Hz]
$U_{{\scriptscriptstyle Mot}}$	Motor-Versorgungsspannung	[V]
$U_{_{\! f}}$	Brems-Versorgungsspannung	[V]
$M_{_f}$	Bremsmoment	[N m]
B3 V6	Getriebemotor-Bauform	

6.1.2 Auswahl der Getriebemotorgröße

Um die für die Anwendung am besten geeignete Getriebemotorgröße auszuwählen, ist es notwendig:

- 1 über die erforderlichen Daten verfügen, wie im vorigen Absatz beschrieben:
 - erforderliche Abtriebsleistung P_2 ,
 - Drehzahl n₂,
 - Betriebsbedingungen (Belastungsart, Betriebsdauer, Schalthäufigkeit z, andere Betrachtungen).
- den Betriebsfaktor fs bez. der Betriebsbedingungen bestimmen (Seite 48).
- die Getriebemotorgröße bestimmen in Abhängigkeit von:
 - n
 - f
 - Leistung P₁ höher als oder gleich P₂

Wenn die erforderliche Leistung P_2 das Eregebnis einer genauen Berechnung ist, so ist der Getriebemotor in Abhängigkeit von einer Leistung P_1 gleich oder größer sein soll als P_2 / η , wobei η = 0,97 ÷ 0,98 der Wirkungsgrad des Getriebes ist (Seite 52).

Falls die Motornormierung ergibt, dass die verfügbare Leistung P_1 im Katalog viel größer ist als die erforderte Leistung P_2 so kann der Getriebemotor nur dann in Abhängigkeit von einem kleineren Betriebsfaktor gewählt werden, wenn es ganz sicher ist, dass die verfügbare Mehrleistung unter keinen Umständen erfordert wird und dass die Schalthäufigkeit z derart gering ist, dass der Betriebsfaktor nicht beeinflusst wird (Seite 52).

Die Berechnungen können anstatt von den Leistungen auch von den Drehmomenten ausgehen; bei kleinen n_2 -Werten ist dies sogar vorzuziehen.

6.1.3 Nachprüfungen

- Die etwaigen Radialbelastungen F_{r2} nach den Anweisungen und den Werten vom Kap. 55 und 56.
- Für den Motor ist die Schalthäufigkeit z nachzuprüfen, falls sie oberhalb der normalerweise zulässigen Schalthäufigkeit liegt laut Kap. 2 Kat. TX; normalerweise ist diese Nachprüfung nur bei Bremsmotoren durchzuführen.
- Bei aufgestelltem Belastungsdiagramm und/oder Überbelastungen, bedingt durch Anläufe unter voller Belastung (besonders für hohe Trägheiten und niedrige Übersetzungen), Abbremsungen, Stöße, Getriebe, in denen die langsamlaufende Welle durch die Trägheit der angetriebenen Maschine als Antrieb wirkt, die angewendete Leistung höher als die erforderliche Leistung, andere statische oder dynamische Ursachen darauf achten, dass der Spitzenwert des Drehmoments immer kleiner ist als 1,6 · M_N (wobei M_{N2} = M₂ · fs).

Falls es höher oder nicht schätzbar ist, Sicherheitsvorrichtungen aufstellen, damit 1,6 · M_{N2} nicht übertreten wird.

6.1.4 Überbelastungen beim Anlauf und Anhalten

Anlaufdrehmment

Bei Anlauf mit voller Belastung nachprüfen (besonders für hohe Trägheiten und niedrige Übersetzungen), ob Anlaufdrehmoment $M_{2,\text{Anlauf}}$ ist:

$$M_{2\text{Anl.}} = \left(\frac{M_{\text{Anl.}}}{M_{\text{N}}} \cdot M_{2\text{ verfügbar}} - M_{2\text{ erforderl.}}\right) \cdot \frac{J_{1}}{J_{1} + J_{0}} + M_{2\text{ erforderl.}} < 1.6 \cdot M_{\text{N}2}$$

wobei

• Ma antendation das von der Maschine durch Arbeit und Reibung aufgenommene Drehmoment ist;

• $M_{2 \text{ verticipar}}$ das von der Motornennleistung bedingte Abtriebsdrehmoment darstellt;

J₀ das Motormassenträgheitsmoment ist;

• J_1 das auf die Motorachse bezogene Außenmassenträgheitsmoment in kg m² ist (Getriebe, Kupplungen, angetriebene Maschine) $J_1 = J/i^2$;

Bei der Nachprüfung, dass das Anlaufdrehmoment genügend hoch für den Anlauf ist, sind bei der Auswertung von M_{2 erforderlich} etwaige Anlaufreibungen zu berücksichtigen.

Anhaltemoment (Bremsen)

Bei **Anhalten von Maschinen mit hoher kinetischer Energie** (hohe Trägheitsmomente bei hohen Drehzahlen) mit Bremsmotor, die Bremsbeanspruchung anhand nachstehender Formel nachprüfen:

$$\left(\frac{M_{f}}{\eta} \cdot i + M_{2 \text{ enforderl.}}\right) \cdot \frac{J_{1}}{J_{1} + J_{0}} + M_{2 \text{ enforderl.}} < 1.6 \cdot M_{N2}$$

wobei

• M, das Eichbremsmoment darstellt (s. Tabelle Seite 218);

η der Wirkungsgrad ist;
i die Übersetzung ist;

J₀ das Motormassenträgheitsmoment ist;

• J_1 das auf die Motorachse bezogene Außenmassenträgheitsmoment in kg m² ist (Getriebe, Kupplungen, angetriebene Maschine) $J_1 = J/i^2$;

Achtung:

Sollte es nicht möglich sein, den Betrag der Überbelastung genau zu bestimmen, Sicherheitsvorrichtungen einbauen, damit niemals M_{2max} = 1,6 · M_{N2} überschritten wird.

2635-23.03-1

Project Planning

6.1.5 Betrieb mit Bremsmotor

Anlaufzeit t_a und Motordrehwinkel φ_{a1}

$$t_{a} = \frac{(J_{0} + J_{1}) \cdot n_{1}}{9,55 \cdot \left(M_{Anlauf} - \frac{M_{2 \text{ erforderl.}}}{i}\right)} \quad [s] \qquad \qquad \varphi_{a1} = \frac{t_{a} \cdot n_{1}}{19,1} \quad [rad]$$

Bremszeit t_r und Motordrehwinkel ϕ_{rr}

$$t_{f} = \frac{(J_{o} + J_{1}) \cdot n_{1}}{9,55 \cdot \left(M_{f} + \frac{M_{2 \text{ erforder}.}}{i}\right)} \quad [s] \qquad \qquad \varphi_{ff} = \frac{t_{f} \cdot n_{1}}{19,1} \quad [rad]$$

wobei:

- M_{Anlauf} das Anlaufdrehmoment des Motors ist $\left(\frac{9550 \cdot P_1}{n_1} \cdot \frac{M_{Anlauf}}{M_N}\right)$
- M_{f} das Eichbremsmoment des Motors ist (s. Seite 218)
- φ_{a1} der Motordrehwinkel während der Anlaufzeit t_a ist (s. Seite 218)
- φ_{t} der Motordrehwinkel während der Bremszeit t_{t} ist (s. Seite 218)
- J_o das Motormassenträgheitsmoment ist;
- J_{ij} das auf die Motorachse bezogene Außenmassenträgheitsmoment in kg m² ist (Getriebe, Kupplungen, angetriebene Maschine)

Bei anderen Symbolen s. Seite 20 und Tabelle Seite 48.

Die Wiederholung des Bremsvorgangs entsprechend der Temperaturänderung der Bremse sowie dem Abnutzungszustand des Belages ist – in den normalen Grenzen des Lufspaltes und der Raumfeuchtigkeit sowie mit entsprechenden Elektrogeräten – ungefähr \pm 0,1 · $\varphi_{_{\rm ff}}$.

6.1.6 Betrachtungen über Motorleistung

Die **Motorleistung** muss unter Berücksichtigung des Wirkungsgrades des Getriebes und eventueller anderer Antriebe möglichst genau so groß sein wie die von der angetriebenen Maschine erforderte Leistung, und ist daher möglichst genau zu bestimmen.

Die von der Maschine benötigte Leistung kann unter Berücksichtigung ihrer Komponenten berechnet werden:

- · Leistung aufgrund der anfallenden Arbeit,
- die zur Überwindung der Reibung erforderliche Kraft (erstes Lösen, Gleiten oder Rollen)
- Leistung, die zur Überwindung der Trägheit erforderlich ist (insbesondere wenn die Masse und/oder die Beschleunigung oder Verzögerung beträchtlich ist);

oder experimentell auf der Grundlage von Tests und Vergleichen mit bestehenden Anwendungen, amperometrischen und wattmetrischen Messungen bestimmt.

Eine Überdimensionierung des Motors führt zu:

- · einen höheren Einschaltstrom und daher größere Sicherungsventile und Leiterguerschnitte;
- höhere Betriebskosten, da sich der Leistungsfaktor (cos φ) und damit der Wirkungsgrad verschlechtert;
- der Antrieb wird stärker beansprucht und es besteht Bruchgefahr, da er normalerweise auf die erforderte Leistung der Maschine und nicht auf die Leistung des Motors ausgelegt ist.

Höhere Motorleistungen sind nur dann erforderlich, wenn hohe Werte der Umgebungstemperatur, der Aufstellungshöhe, der Einschaltfrequenz oder anderer Bedingungen gefragt sind.

6.2

Betriebsfaktor

Der Betriebsfaktor *f*s bezieht sich auf die verschiedenen Betriebsbedingungen des Getriebes und ist daher bei Nachprüfberechnungen unerlässlich.

- · Belastungsart:
- Dauer;
- Schalthäufigkeit;

und andere Betrachtungen, die bei der Auwahl und bei der Nachprüfung des Getriebes unerlässlich sind. Für eine schnelle und annähernde Auswahl ist in der folgenden Tabelle der hinsichtlich des angetriebenen Maschinentyps erforderliche minimale Betriebsfaktor fs angegeben.

	Belastungsklassifizierung	Angetriebene Maschine	fs≥
I	Gleichmäßige Belastung	Lüfter (kleine Durchmesser)	
	$(m_{J} \le 0.3)$	Rührwerke (Druckmedien niedriger und konstanter Dichte)	
		Mischer (Materialien mit geringer und gleichmäßiger Dichte)	
		Förderbände (Materialien mit niedriger und gleichmäßiger Dichte)	
		Hilfsantriebe	
		Montagelinien	1
		Einfüllmaschinen	
		Kreisselkompressoren	
		Kreisselpumpen (Flüssigkeiten mit niedriger und konstanter Dichte)	
		Bandhöhenförderer	
		Rolltreppen	
II	Mäßige Überbelastungen	Lüfter (mittelmäßige Durchmesser)	
	$(m_{_J} \le 3)$	Rührwerke (Flüssigkeiten mit hoher oder variabler Dichte)	
		Mischer (Materialen mit variabler Dichte)	
		Bandförderer (lose Materialen großer Stückigkeit)	
		Fahrantriebe	
		Dosierpumpen	
		Zahnradpumpen	
		Mehrzylinder-Kolbenpumpen	1,32
		Kreiselpumpen (Flüßigkeiten mit hoher oder variabler Dichte)	
		Palletisieranlagen	
		Treibstock	
		Verpackungsmaschinen	
		Flaschenfüllmaschinen	
		Lastaufzüge	
		Schiebetüren	
III	Heftige Überbelastungen	Becherwerke	
	(<i>m</i> _J ≤ 10)	Rollenbahnen	
		Hochleistungsmischer (feste und heterogene Materialien)	
		Kranich-Übersetzung	
		Mechanismen (Kurbeln, Exzenter)	1,6
		Schere (Blech)	
		Abkantmaschinen	
		Kreiselpumpen	
		Pressen (Kurbel-, Kniehebel-, Exzenterpressen)	

Project Planning

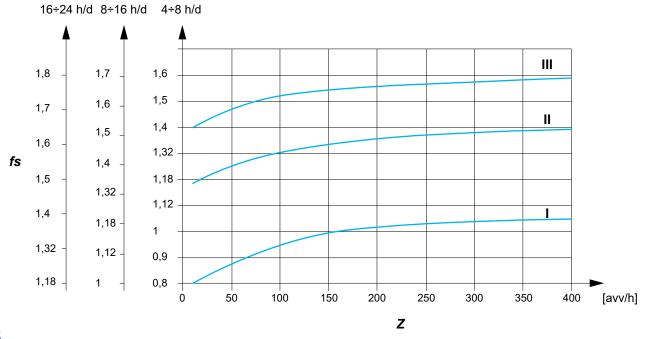
Für eine sorgfältigere Bestimmung des erforderlichen Betriebsfaktors (besonders unter Berücksichtigung der Betriebsstunden) sind folgende Anweisungen zu berücksichtigen.

1) Den Massenbeschleunigungsfaktor m, bestimmen:

$$m_J = \frac{J_1}{J_0}$$

wobei:

- J_1 [kg m²] das Außenmotormassenträgheitsmoment (Kupplungen, angetriebene Maschine); J bez. der Motorachse ist $J_2 = J/i$;
- J_0 [kg m²] das Motormassenträgheitsmoment ist (s. Kat. TX) einschliesslich etwaige Bremse, Schwungrad, usw.;
- i die Übersetzung des ausgewählten Getriebes ist.
- 2) Die geeignete Überbelastungsklasse in Bezug auf Beschleunigungsfaktor der Massen m, identifizieren


m, ≤ 0,3 (mäßige Überbelastungen) Klasse I

 $\vec{m_j} \le 3$ (mäßige Überbelastungen: $\approx 1,6$ fach die normale Belastung) **Klasse II**

m, ≤ 10 (heftige Überbelastungen: ≈ 2,5 fach die normale Belastung) Klasse III

Für $m_{_{J}}$ -Werte höher als 10 bei hohen Spielwerten in der kinematischen Kette und/oder hohen Radialbelastungswerten muss man spezifische Bewertungen ausführen: Rossi S.p.A. kontaktieren.

3) Aus dem Diagramm unten, bezüglich der Überbelastungsklasse, der Betriebsdauer und der Schalthäufigkeit z, den erforderlichen Betriebsfaktor bestimmen.

6.3

Wirkungsgrad

Der **Wirkungsgrad des Getriebes** wird durch die Reibung der Gleit- und Rollflächen (Zahnräder, Lager und Dichtungen) und die Flatterverluste des Schmieröls bestimmt.

Der Wirkungsgrad wird von den Betriebsbedingungen (Last und Drehzahl) beeinflusst und kann einen Höchstwert von bis zu

- Höchstwirkungsgrad 0,97 (für 3-untersetzungsstufiges iC und iO-Getriebe)
- Höchstwirkungsgrad 0,98 (für 2-untersetzungsstufiges iC-Getriebe).

Die aufgrund des Wirkungsgrads verlorene Leistung wird in Form eines Wärmestroms über die Außenflächen des Getriebemotors abgeführt.

Um das Schmiermittel und das Dichtungsmaterial nicht zu überhitzen, ist darauf zu achten, dass die eingebrachte Leistung die Entsorgungsleistung des Getriebemotors nicht übersteigt.

64

Wärmeleistung

Die Nennwärmeleistung P_{TN} [kW] ist diejenige Leistung, die an die Antriebswelle des Getriebes angelegt werden kann, ohne dass die GetriebeöltempEratur von ca. 95 °C überschritten wird, bei den folgenden Betriebsbedingungen:

- Antriebsdrehzahl n₄ = 1400 min⁻¹ (4-poliger Motor, 50 Hz);
- Bauform B3, B6, B7, B8;
- Dauerbetrieb S1;
- maximale Umgebungstemperatur 25 °C;
- max Höhe 1000 m ü.d.M.;
- Luftgeschwindigkeit ≥ 1,25 m/s (typischer Wert bei einem Getriebemotor mit belüftetem Motor);

Die in Kapitel 9 dargestellten Getriebemotorkombieinheiten sind bereits für alle oben genannten Bedingungen thermisch geprüft, auch für 2-polige Kombieinheiten.

Andernfalls ist zu prüfen, dass die angewendete Leistung P_{τ} kleiner als oder gleich ist die Nennwärmeleistung des Getriebes $P_{\tau N}$ (in der Tabelle angegeben) multipliziert mit den Korrektionsfaktoren $f_{t\tau}$, f_{t2} , f_{t3} , f_{t4} , f_{t5} (in den folgenden Tabellen), die verschiedene Betriebsbedingungen berücksichtigen:

$$P_{1} \leq P_{TN} \cdot f_{T1} \cdot f_{T2} \cdot f_{T3} \cdot f_{T4} \cdot f_{T5}$$

Wenn die Überprüfung nicht erfüllt ist, die Anwendung von Sonderschmiermitteln oder von Kühleinheiten mit Wärmeaustauscher überprüfen. Rossi S.p.A. kontaktieren.

Die Wärmeleistung braucht nicht berücksichtigt zu werden, wenn der Dauerbetrieb höchstens 1 ÷ 3 h währt und sich daran genügend lange Stillstandzeit (ca. 1 ÷ 3 h) anschliessen, damit im Getriebe wieder ca. die Umgebungstemperatur herrscht. Bei Umgebungstemperatur über 50 °C oder unter 0 °C Rossi S.p.A. kontaktieren.

Nennwärmeleistung P_{TN} [kW]:

	$oldsymbol{P_{ au_N}}[kW]$									
	iC 27	iC 27 iC 37 iC 47 iC 57 iC 67 iC 77 iC 87 iC 97								
2	7,5	8	10,6	12,5	15	20	28	40		
3	5,3	6	8,5	9,5	11,2	15	21,2	30		

	P_{τ_N} [kW]								
	iO 373	iO 473	iO 573	iO 673	iO 773	iO 873	iO 973		
3	5,6	7,5	9	10,6	15	25	33,5		

Wärmefaktor f_{tt} bezüglich der Antriebsdrehzahl n_t :

		$oldsymbol{f_{TI}} oldsymbol{n_I}[min^{-1}]$							
		710	900	1120	1400	1800	2800		
iC	2	1,18	1,12	1,06	1	0,85	0,6		
iC	3	4.00	1,06	1,03	1	0,95	0.85		
iO	1,06		1,00	1,03	l l	0,93	0,85		

Wärmefaktor \emph{f}_{t2} bezüglich der **Umgebungstemperatur** und der **Betriebsart**:

$\mathcal{T}_{_{Umg\ max}}$	f_{i2}							
°C	Dauerbetrieb S1	Aussetzbetrieb S3 S6						
			Einschaltdauer [%] bei 60 min Betrieb					
		60	40	25	15			
60	0,5	0,6	0,67	0,8	0,85			
50	0,63	0,75	0,85	1	1,06			
40	0,8	0,95	1,06	1,18	1,32			
30	0,95	1,12	1,25	1,4	1,6			
25	1	1,18	1,32	1,5	1,7			
10	1,18	1,4	1,6	1,8	2			

Wärmefaktor f_{t3} je nach Bauform:

Bauform	$f_{_{T3}}$			
	iC 272 iC 972 iC 273 iC 97			
V5	0,8	0,9		
V6	0,71	0,8		

Bauform	f _{τ3} iO 373 iO 973		
B6, V5	0,9		
B7, B8, V6	0,8		

Wärmefaktor f_{t4} je nach Aufstellungshöhe:

Höhe	f _{T4}
≤ 1000	1
1000 ÷ 2000	0,95
2000 ÷ 3000	0,9
3000 ÷ 4000	0,85
≥ 4000	0,8

Wärmefaktor \emph{f}_{t5} je nach Luftdrehzahl auf dem Gehäuse:

Luftdrehzahl m/s	Aufstellungsumgebung	f ₇₅
< 0,63	sehr eng oder ohne Luftbewegung oder mit geschirmtem Getriebe	(1)
0,63	eng mit begrenzten Luftbewegungen	0,71
1	erweitert und ohne Lüftung	0,9
1,25	erweitert und mit leichter Lüftung (z.B.: Getriebemotor mit belüftetem Motor)	1
2,5	geöffnet und gekühlt	1,18
4	mit heftigen Luftbewegungen	1,32

⁽¹⁾ Rossi S.p.A. kontaktieren

Rossi

Radialbelastungen auf langsamlaufendem Wellenende

6.5.1 Allgemeines

Wenn die Verbindung zwischen Getriebemotor und Arbeitsmaschine durch einen Antrieb erfolgt, welcher Radialbelastungen auf dem Wellenende bewirkt, ist es notwendig dass diese Motoren gleich oder kleiner sind als diejenigen vom Kap.s 9, weil die Lebensdauer und der Verschleiss der Lager (was auch die Radpaare negativ beeinflusst), sowie die Festigkeit der langsamlaufenden Welle der zulässigen Radialbelastung natürlich bestimmte Grenzen setzen.

6.5.2 Bestimmung der angewendeten Radialbelastung

Bei den üblichen Antriebsfällen, kann die Radialbelastung F_{r_2} nach folgender Formel berechnet werden, wo k je nach der Übersetzungsart unterschiedliche Werte annimmt

$$F_{r2} = k \cdot \frac{2 \cdot M_2}{d} \quad [N]$$

wohei

M₂ [N m]

das Abtriebsdrehmoment ist;

• *d* [m]

der Teilkreisdurchmesser ist;

• k

ein Koeffizient ist, dessen Wert je nach Antriebstyp ändert:

k = 1 für Kennenantrieb (Heben im Allgemeinen);

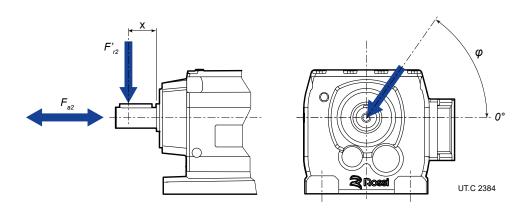
k = 1,5 für Zahnradantrieb;

k = 2,5 für Keilriementrieb;

k = 1,1 für Zahnradantrieb;

k = 3,55 für Reibradtrieb.

6.5.3 Zulässige Radialbelastung


Die zulässigen Radialbelastungswerte F_{r_2} sind in den Tabellen im Kap. 9 angegeben und für Getriebemotoren in Fußausführung (P...) gültig.

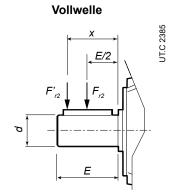
Diese Werte beziehen sich auf die Drehzahl n_2 und auf das Abtriebsdrehmoment M_2 unter Berücksichtigung der in der Mittellinie des langsamlaufenden Wellenendes wirkenden Belastung, auf A Seite (für iO-Getriebemotoren) bei der ungünstigsten Drehrichtung und des Drehwinkels der Belastung.

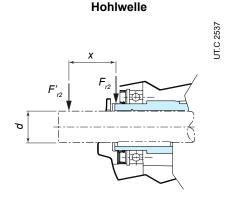
Sind die genaue Winkelposition der Belastung und der genaue Drehsinn bekannt, so können zulässige Radialbelastungen **höher** als die angegebenen Belastungen erreicht werden.

Auf Anfrage, ist die Option mit verstärkten Lagern auf langsamlaufender Welle verfügbar (s. Seite 41).

Zur Überprüfung des konkreten Falles wenden Sie sich bitte an Rossi S.p.A. unter Bezugnahme auf die Abbildungsangaben.

6.5.4 Zulässige Radialbelastung


Im Fall, dass keine Radialbelastung vorhanden ist, ist die maximal zulässige Axialbelastung gleich das 0,5-fache des Wertes der in Kap. 9 angegebenen Radialbelastungen.


Außer der Radialbelastung kann gleichzeitig eine Axialbelastung vorliegen, die das 0,2-fache der Werte laut Kap. 9 erreichen

Bei höheren oder nicht zentrisch angreifenden Axialkräften Rossi S.p.A. kontaktieren.

6.5.5 Radialbelastung nicht in der Mittellinie

Wenn die Radialbelastung nicht in der Mittellinie angreift, d.h. auf einem Abstand anders als 0,5 · E vom Wellenabsatz, ist die zulässige Radialbelastung bei dem Abstand x (F_{r2x}) vom im Kap. 9 und 11 angegebenen Wert wieder zu kalkulieren; dabei achten, dass der minimale Wert laut folgender Formulen angewendet wird,

$$F'_{r2b} = F_{r2} \cdot \frac{E/2 + y}{x + y}$$
 [N]

$$F'_{r2s} = \frac{m}{x+q} [N]$$

$$F'_{r2} = min(F'_{r2b}; F'_{r2s})$$
 [N]

wobei

- $F'_{r2b}[N]$ die zulässige Radialbelastung bez. der Lagerlebensdauer ist, die auf dem Abstand x vom Wellenabsatz
- $F'_{r2s}[N]$ die zulässige Radialbelastung bez. der Widerstandfähigkeit der Welle ist, die auf dem Abstand x vom Wellenabsatz angreift;
- F_{r2} [N] F'_{r2} [N] die zulässige Radialbelastung ist, die in der Mittellinie des langsamlaufenden Wellenendes angreift (s. Kap. 9);
- die zulässige Radialbelastung auf x-Distanz vom Absatz ist;
- E [mm] die Länge des langsamlaufenden Wellenendes des Getriebemotors ist;
- d [mm] Durchmesser des langsamlaufenden Wellenendes des Getriebemotors ist;
- x [mm] der Abstand zwischen Wellenabsatz und Lastanwendungspunkt ist.
- y [mm] Parameter, der von der Geometrie der langsamlaufenden Getriebemotorwelle abhängt;
- m [N mm] Parameter, der von der Geometrie der langsamlaufenden Getriebemotorwelle abhängt;
- q [mm] Parameter, der von der Geometrie der langsamlaufenden Getriebemotorwelle abhängt.

Getriebemotor-	E/2 + y	у	т	q	d	Ε
größe	mm	mm	N mm	mm	mm	mm
iC 27	106,5	81,5	155700	11,8	25	50
iC 37	118	93	123500	0	25	50
iC 47	137	107	243900	15	30	60
iC 57	147,5	112,5	376300	18	35	70
iC 67	168,5	133,5	264600	0	35	70
iC 77	173,7	133,7	396800	0	40	80
iC 87	216,7	166,7	845000	0	50	100
iC 97	255,5	195,5	1060000	0	60	120

Getriebemotor-	E/2 + y	у	т	q	d	Е
größe	mm	mm	N mm	mm	mm	mm
iO 373	123,5	98,5	130000	0	25	50
iO 473	153,5	123,5	140000	0	30	60
iO 573	169,7	134,7	270000	0	35	70
iO 673	181,3	141,3	412000	0	40	80
iO 773	215,8	165,8	769000	0	50	100
iO 873	252	192	1640000	0	60	120
iO 973	319	249	2800000	0	70	140

Die Tabelle unten beschreibt die Fälle, wobei die zulässige Radialbelastung zu begrenzen ist:

Einbaufläche	Getriebemotor- größe	Bauform	Begrenzung
B3	iO 373 iO 973	В3	Bei Wandmontage (wie in der Abbildung dargestellt) reduziert sich die in den Auswahltabellen angegebene zulässige Radiallast F_{r2} um 50%.

2635-23.03-1

Sektioninhalt

7.1	Bauforme	n	60
	7.1.1	Allgemeines	60
	7.1.2	Änderung der Bauform	62
	7.1.3	Universal-Bauform BX	62
7.2	Schraube	nposition	62
	7.2.1	Positionen der Ablass- und Entlüftungsschraube	62
	7.2.2	Position der Ablass- und Entlüftungsschraube des Koaxialgetriebemotors in Fußausführung	64
	7.2.3	Position der Ablass- und Entlüftungsschraube des Koaxialgetriebemotors in Flanschausführung	65
	7.2.4	Position der Ablass- und Entlüftungsschraube des Kegelstirnradgetriebemotors in Fußausführung	66
	7.2.5	Position der Ablass- und Entlüftungsschraube des Kegelstirnradgetriebemotors in Flanschausführung	67
	7.2.6	Position der Ablass- und Entlüftungsschraube des Kegelstirnradgetriebemotors in Aufsteckbefestigung	68

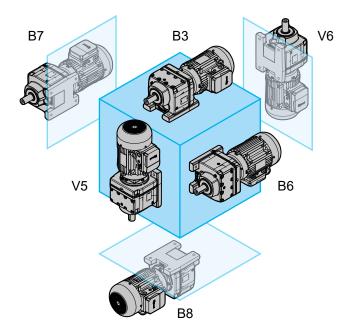
2635-23.03-1

7.1

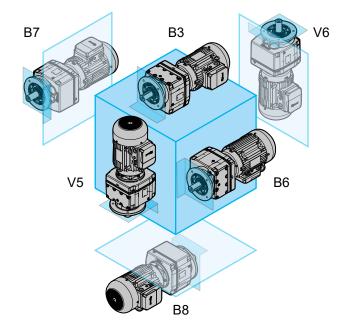
Bauformen

7.1.1 Allgemeines

Hier folgen die möglichen Bauformen der verschiedenen Versionen der Rossi-Getriebemotoren.


Bei keiner spezifischen Erfordernis ist die Bauform B3 vorzuziehen, die wirtschaftlicher von einem technischen und ökonomischen Gesichtspunkt ist:

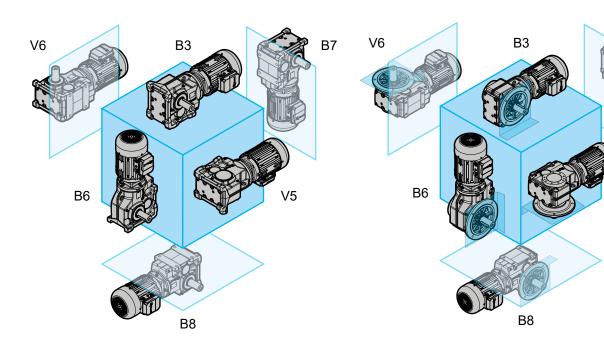
- · maximale Simplifizierung des Schmiersystems,'
- · weniger Ölspritzleistung,
- · niedrigere Erwärmung des Getriebes,
- höchste Lagerverfügbarkeit.


Für geneigte oder oszillierende Einbaulagen Rossi S.p.A. kontaktieren.

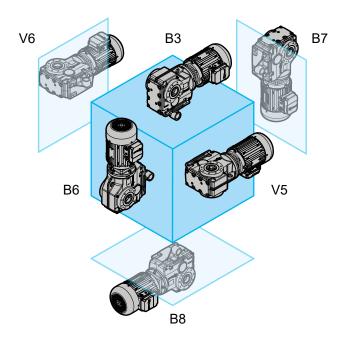
KOAXIALGETRIEBEMOTOREN iC

PE - Fußbefestigung

FE - Flanschbefestigung


В7

V5


FE - Flanschbefestigung

KEGELSTIRNRADGETRIEBEMOTOREN iO

PE - Fußbefestigung

SE - Aufsteckbefestigung

7.1.2 Änderung der Bauform

Wird das Getriebe in einer anderen als der auf dem Typenschild angegebenen Bauform eingebaut, ist dies erforderlich:

- die Position der Entlüftungsschraube anpassen (s. Seiten 64, 65 für Koaxial iC und 66, 67, 68 für Kegelstirnrad iO)
- die Schmiermittelmengen anpassen (s. Seite 72) bis der erforderliche Ölstand erreicht ist, wobei darauf zu achten ist, dass sich keine Luftblasen im Öl des Getriebes befinden
- für die Umstellung auf die Bauform V5 oder V6 Rossi S.p.A. kontaktieren

7.1.3 Universal-Bauform BX

Bei dieser Bauform werden die Getriebemotoren vollständig mit Schmiermittel gefüllt und mit geschlossenen Ölschrauben sowie einer losen Entlüftungsschraube geliefert.

Vor der Inbetriebnahme:

- die Entlüftungsschraube in die von der Betriebsanleitung vorgesehene Position bringen (s. Seiten 64, 65 für Koaxial iC und 66, 67, 68 für Kegelstirnrad iO))
- die Ölmenge an die Betriebs-Bauform anpassen (s. Seite 72).

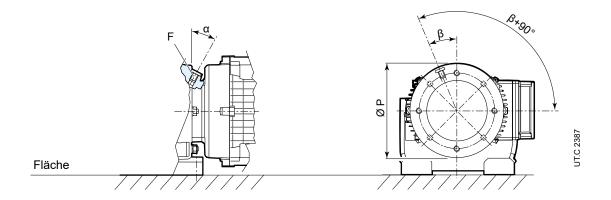
7.2

Schraubenposition

7.2.1 Positionen der Entlüftungs- und Ablassschrauben

Die Position der Entlüftungs- und Ablassschrauben hängt von der Getriebemotorbauform ab, s. folgende Seiten. Die folgende Tabelle zeigt, wo sich die Entlüftungs- oder Ablassschraube am Motorflansch in Abhängigkeit von der Bauform des Getriebemotors befindet.

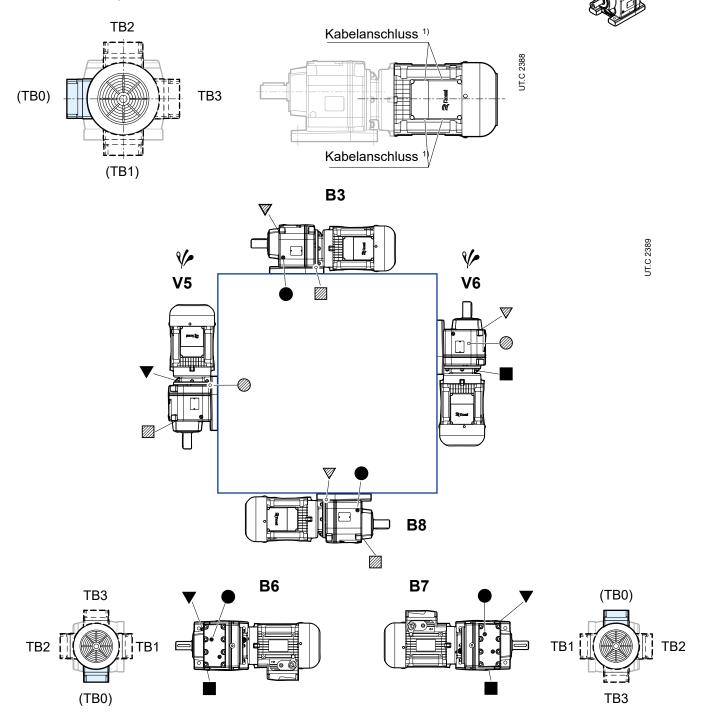
Bauform		Position der Entlüftungsschraube	Position der Ablassschraube
iC iO			
B3, B6, B7, B8 B3, B8, V5, V6		Im Getriebegehäuse	Im Getriebegehäuse
V5	В6	Im Motorflansch	Im Getriebegehäuse
V6	В7	Im Getriebegehäuse	Im Motorflansch


Wenn sich die Entlüftungs- oder Ablassschraube auf dem Motorflansch befindet, wird ihre Winkellage anhand der Position des Motorklemmenkastens bestimmt.

Alle Abbildungen in diesem Katalog beziehen sich auf die Entlüftungs- und Ablassschrauben, wenn sich der Motorklemmenkasten in der Standardposition TB0 befindet (siehe Seiten 40, 64, 65, 66, 67, 68).

Die genaue Position der Entlüftungs- und Ablassschrauben entsprechend der Position des Motorklemmenkastens ist auf der nächsten Seite dargestellt.

Rossi



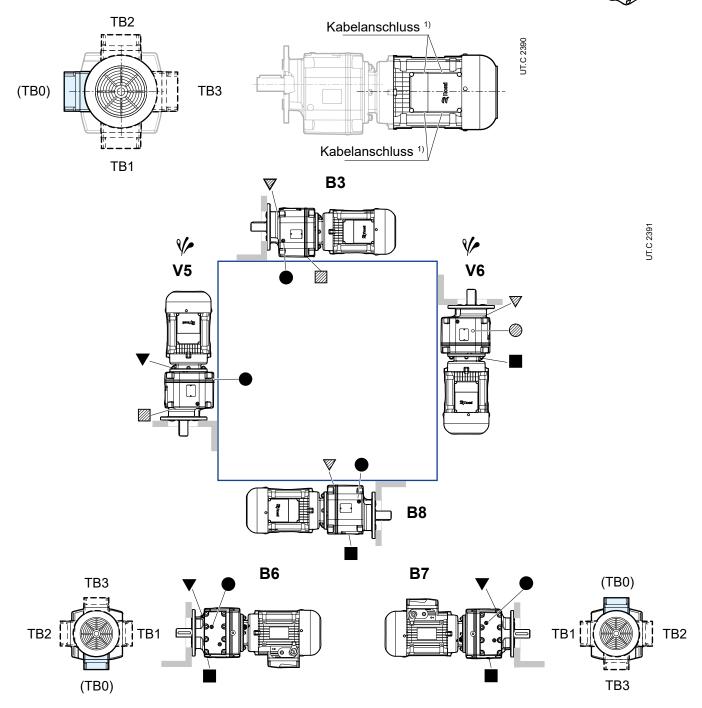
	P Ø	α •	β	F
	120	0	45	M10x1
63	160	0	45	M10x1
	200	30	22,5	M12x1,5
	120	0	45	M10x1
71	160	0	45	M10x1
	200	30	22,5	M12x1,5
	120	15	22,5	M10x1
	160	30	22,5	M12x1,5
80	200	30	22,5	M12x1,5
	250	30	22,5	M12x1,5
	300	90	22,5	M22x1,5
	120	30	22,5	M10x1
	160	30	22,5	M10x1
90	200	30	22,5	M12x1,5
	250	30	22,5	M12x1,5
	300	30	22,5	M22x1,5
	120	30	22,5	M10x1
400	160	30	22,5	M10x1
100 112MA	200	30	22,5	M12x1,5
112WA	250	30	22,5	M12x1,5
	300	30	22,5	M22x1,5
	160	30	22,5	M10x1
112M	200	30	22,5	M12x1,5
TTZIVI	250	30	22,5	M12x1,5
	300	30	22,5	M22x1,5
	160	30	22,5	M10x1
132S	200	15	22,5	M12x1,5
132M	250	30	22,5	M12x1,5
	300	30	22,5	M22x1,5
4001	200	30	22,5	M10x1
132L 160	250	30	22,5	M12x1,5
100	300	30	22,5	M22x1,5
400	250	30	22,5	M12x1,5
180	300	30	22,5	M22x1,5
200	250	30	22,5	M12x1,5
200	300	30	22,5	M22x1,5

7.2.2 Position Ablass-u. Entlüftungsschraube bei Koaxialgetriebemotor mit Füßen

iC 27...PE / iC 97...PE

iC 27...: keine Entlüftungsschrauben für B3, B8, B6, B7

iC 27...: keine Ölstand- und Ablassschrauben iC 47..., iC 57...: keine Ölstandschraube für B6


- Entlüftungsschraube
- *** *** · · · · · ·
- Ölstandschraube
- Ölablassschraube
- Öleinfüllschraube auf Gegenseite (unsichtbar)
- Ölstandschraube auf Gegenseite (unsichtbar)
- Ölablassschraube auf Gegenseite (unsichtbar)

Ggf. hohe Ölspritzleistung: für den Korrektionsfaktor f_{t3} der Nennwärmeleistung P_{tN} s. Kap. 53.

¹⁾ Der Kabelanschluss ist die Verantwortung des Kunden: Klemmenkasten ist gehäuseeigen mit Motorgehäuse und mit Sollbruchstellen zum Kabeleintritt, zwei Vorbereitungen je Seite (eine für den Leistungskabel und eine für Hilfsvorrichtungen).

7.2.3 Position Ablass u. Entlüftungsschraube Koax. Getriebemotor mit Flansch

iC 27...FE / iC 97...FE

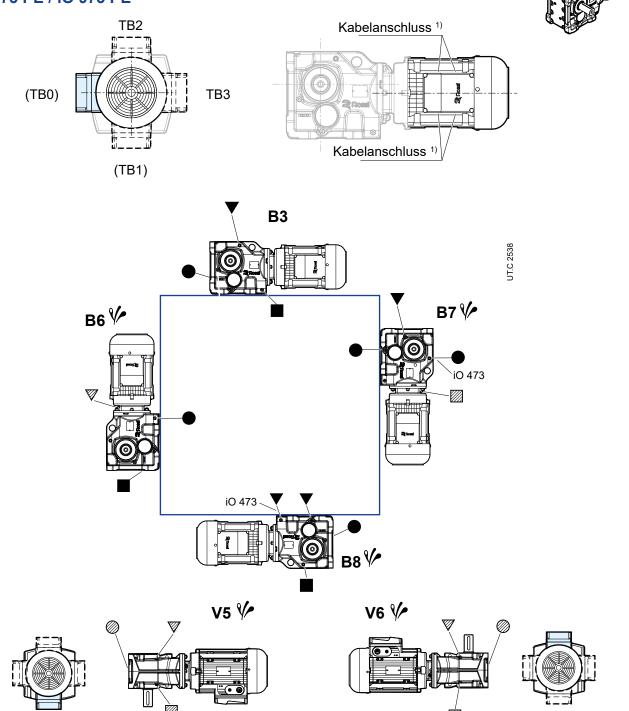
iC 27...: keine Entlüftungsschrauben für B3, B8, B6, B7

iC 27...: keine Ölstand- und Ablassschrauben iC 47..., iC 57...: keine Ölstandschraube für B6

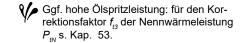
Entlüftungsschraube

ÖlstandschraubeÖlablassschraube

Öleinfüllschraube auf Gegenseite (unsichtbar)

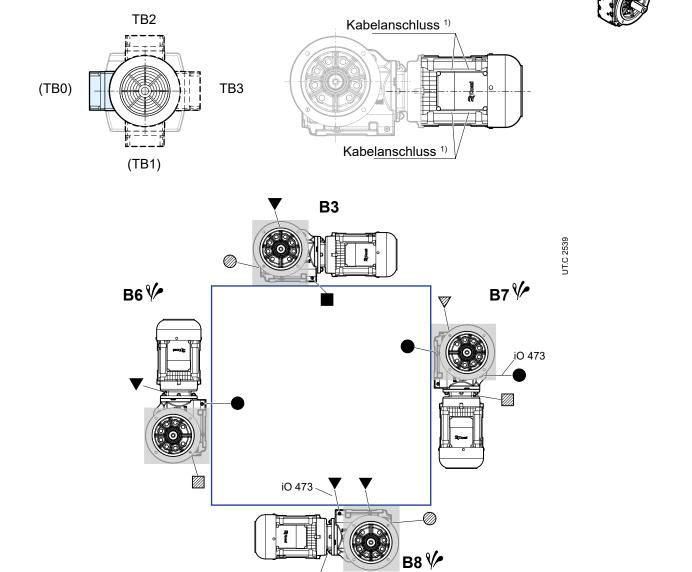

Ölstandschraube auf Gegenseite (unsichtbar)Ölablassschraube auf Gegenseite (unsichtbar)

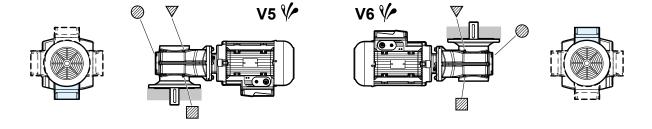
Ggf. hohe Ölspritzleistung: für den Korrektionsfaktor f_{t3} der Nennwärmeleistung P_{tN} s. Kap. 53.


¹⁾ Der Kabelanschluss ist die Verantwortung des Kunden: Klemmenkasten ist gehäuseeigen mit Motorgehäuse und mit Sollbruchstellen zum Kabeleintritt, zwei Vorbereitungen je Seite (eine für den Leistungskabel und eine für Hilfsvorrichtungen).

7.2.4 Position Ablass-u. Entlüftungsschraube bei Kegelstirngetriebemotor mit Füßen

iO 373 PE / iO 973 PE

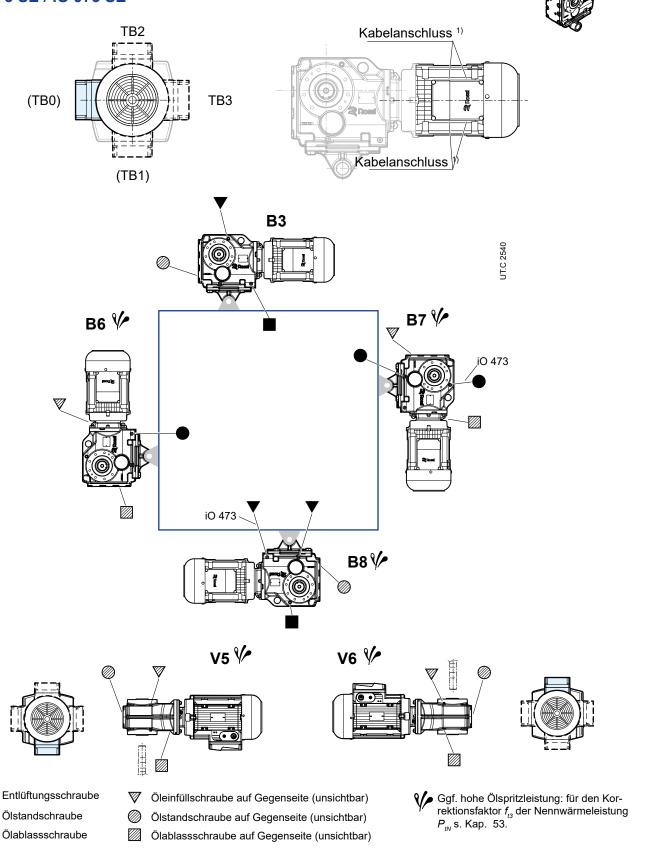

- Entlüftungsschraube
- Ölstandschraube
- Ölablassschraube
- ∇ Öleinfüllschraube auf Gegenseite (unsichtbar)
- Ölstandschraube auf Gegenseite (unsichtbar)
- Ölablassschraube auf Gegenseite (unsichtbar)



¹⁾ Der Kabelanschluss ist die Verantwortung des Kunden: Klemmenkasten ist gehäuseeigen mit Motorgehäuse und mit Sollbruchstellen zum Kabeleintritt, zwei Vorbereitungen je Seite (eine für den Leistungskabel und eine für Hilfsvorrichtungen).

7.2.5 Position Ablass-u. Entlüftungsschraube bei Kegelstirngetriebemotor mit Flansch

iO 373 FE / iO 973 FE



- Entlüftungsschraube
- Ölstandschraube
- Ölablassschraube
- Öleinfüllschraube auf Gegenseite (unsichtbar)
- Ölstandschraube auf Gegenseite (unsichtbar)
- Ölablassschraube auf Gegenseite (unsichtbar)
- Ggf. hohe Ölspritzleistung: für den Korrektionsfaktor f_{13} der Nennwärmeleistung P_{1N} s. Kap. 53.

¹⁾ Der Kabelanschluss ist die Verantwortung des Kunden: Klemmenkasten ist gehäuseeigen mit Motorgehäuse und mit Sollbruchstellen zum Kabeleintritt, zwei Vorbereitungen je Seite (eine für den Leistungskabel und eine für Hilfsvorrichtungen).

7.2.6 Position Ablass-u. Entlüftungsschraube bei Kegelstirngetriebemotor in Aufsteckbefest.

iO 373 SE / iO 973 SE

¹⁾ Der Kabelanschluss ist die Verantwortung des Kunden: Klemmenkasten ist gehäuseeigen mit Motorgehäuse und mit Sollbruchstellen zum Kabeleintritt, zwei Vorbereitungen je Seite (eine für den Leistungskabel und eine für Hilfsvorrichtungen).

Rossi

Leerseite

Bau- und Betriebsdetails

Sektioninhalt

8.1	Schmie	erung	72
	8.1.1	Allgemeines	72
	8.1.2	Ölmenge	72
	8.1.3	Schmiermitteltabelle	73
	8.1.4	ISO-Viskositätsgrad	73
	8.1.5	Ölwechselintervallen	73
	8.1.6	Entlüftungsschrauben	73
8.2	Motora	dapter	74
	8.2.1	Adapter für den Einbau von IEC-Standardmotoren	74
	8.2.2	Adapter für den Einbau von NEMA C-Face-Standardmotoren	75
8.3	IEC- o	der NEMA-Motoreinbau auf Adapter	76
8.4	Befesti	gungsschrauben	76
8.5	Details	der Befestigungsflansche des Getriebemotors	77
8.6	Abmes	sungstoleranzen	79
8.7	Hinwei	se zu den Abmessungen	80
	8.7.1	Details zu den Gesamtabmessungen der HB- und HBZ-Motoren	80
	8.7.2	Details zu den Gesamtabmessungen des zweiten Motorwellenendes	81

2635-23.03-1

Schmierung

8.1.1 Allgemeines

Zahnradpaare und Lager sind ölbad-, oder spritzgeschmiert, oder mit Lebensdauer-Fett (mit oder ohne NILOS-Ring) geschmiert. Falls nicht anders angegeben, sind die Getriebemotoren **mit Synthetikölfüllung** (KLÜBER Klünersynth GH 6-220, MOBIL Glygoyle 220, SHELL Omala S4 WE 220), für Lebensdauerschmierung – ohne Außenverunreinigung – geliefert.

Umgebungstemperatur 0 ÷ 40 °C mit Spitzen von -20 °C und +50 °C.

Bei Bauform V6 sind die Lager der langsamlaufenden Welle mit Fett und metallischem Schirm geschmiert.

Wichtig:

Die auf Bestellung angegebene Bauform bestimmt die Schmiermittelmenge im Getriebe bei der Lieferung und die etwaigen Lager mit unabhängiger Schmierung.

Sicherstellen, dass das Getriebe in der Bauform montiert wird, die bei der Bestellung vorgesehen und auf dem Typenschild angegeben ist.

Ist der Getriebemotor in einer davon abweichenden Bauform montiert, muss die Ölmenge entsprechend der Tabellenwerte überprüft und ggf. korrigiert werden.

Ausserdem braucht die senkrechte Bauform V6 die Anwendung von Sonderfettschmierung auf obigem Lager.

Die Bauform darf nur mit vorheriger Genehmigung von Rossi S.p.A. geändert werden, unter Androhung des Verfalls der Garantie.

8.1.2 Ölmenge

Angegebene Ölmengen sind nur orientierend. Die genaue Ölmenge für das Getriebe ist durch das Niveau gegeben.

PE; FE												
Getriebe-	Cimongo [i]											
motorgröße	В3	В6	В7	B8	V5	V6						
iC 27	0,45	0,6	0,6	0,55	0,9	0,8						
iC 37	0,3	0,75	0,95	0,95	1,05	0,85						
iC 47	0,7	1,5	1,5	1,5	1,65	1,6						
iC 57	0,8	1,7	1,7	1,7	2,1	1,9						
iC 67	1,1	1,8	2,0	2,8	2,9	2,4						
iC 77	1,2	2,5	3,4	3,6	3,8	3,3						
iC 87	2,3	6,3	6,5	7,2	7,2	6,4						
iC 97	4,6	11,3	11,7	11,7	13,4	11,7						

PE											
Getriebe-		Ölmenge [l]									
motorgröße	В3	B3 B6 B7 B8 V5 V									
iO 373	0,5	1,25	1,0	1,0	0,95	0,95					
iO 473	0,8	2,0	1,3	1,5	1,6	1,6					
iO 573	1,1	2,8	2,2	2,2	2,3	2,1					
iO 673	1,1	3,45	2,4	2,6	2,6	2,6					
iO 773	2,2	5,8	4,1	4,4	4,2	4,4					
iO 873	3,7	10,9	8,0	8,7	8,0	8,0					
iO 973	7,0	20,0	14,0	15,7	15,7	15,5					
	•	•	•	•		•					

FES											
Getriebe-	Ölmenge [l]										
motorgröße	В3	В6	В7	B8	V5	V6					
iO 373	0,5	1,5	1,1	1,1	1,0	1,0					
iO 473	0,8	2,2	1,3	1,7	1,6	1,6					
iO 573	1,2	3,15	2,2	2,4	2,5	2,3					
iO 673	1,1	3,7	2,4	2,8	2,7	2,7					
iO 773	2,1	5,9	4,1	4,4	4,5	4,5					
iO 873	3,7	11,9	8,2	9,0	8,4	8,4					
iO 973	7,0	21,5	14,7	17,3	15,7	16,5					

FEH SEH											
Getriebe-	Ölmenge [l]										
motorgröße	В3	В6	В7	B8	V5	V6					
iO 373	0,5	1,4	1,0	1,0	1,0	1,0					
iO 473	0,8	2,15	1,3	1,6	1,6	1,6					
iO 573	1,2	3,15	2,2	2,4	2,7	2,4					
iO 673	1,1	3,7	2,4	2,7	2,6	2,6					
iO 773	2,1	5,9	4,1	4,6	4,4	4,4					
iO 873	3,7	11,1	8,2	8,8	8,0	8,0					
iO 973	7,0	20,0	14,7	15,7	15,7	15,7					

8.1.3 Schmiermitteltabelle

Wichtig:

Ungeeignete Schmiermittel können zu Schäden am Getriebe führen.

Die Viskosität und die Art des zur Befüllung verwendeten Schmieröls **sind auf dem Klebeschild am Getriebe angegeben**. Rossi S.p.A. lehnt jede Verantwortung für Schäden ab, die durch die Verwendung anderer Schmiermittel oder durch die Verwendung außerhalb des vorgesehenen Umgebungstemperaturbereichs entstehen. Die Angaben zum Schmierstoff binden Rossi S.p.A. nicht an die Qualität des vom jeweiligen Hersteller gelieferten Schmiermittels. Mischen Sie keine verschiedenen Schmieröle; mischen Sie keine synthetischen und mineralischen Öle.

Hersteller	PAO Synthetik-Öl	PAG Synthetik-Öl	Mineralöl	Hersteller	PAO Synthetik-Öl	PAG Synthetik-Öl	Mineralöl
AGIP	Blasia SX	Blasia S	Blasia	KLÜBER	Klübersynth GEM4	Klübersynth GH6	Klübersynth GEM1
ARAL	Degol PAS	Degol GS	Degol BG	MOBIL	Mobil SHC Gear	Mobil Glygoyle	Mobilgear 600 XP
ВР	Enersyn EPX	Enersyn SG-XP	Energol GR-XP	SHELL	Omala S4 GX	Omala S4 WE	Omala S2 G
CASTROL	Alphasyn EP	Optiflex A	Alpha SP	TEXACO	Pinnacle	Synlube CLP	Meropa
FUCHS	Renolin Unisys	Renolin PG	Renolin CLP	TOTAL	Carter SH	Carter SY	Carter EP

8.1.4 ISO-Viskositätsgrad

Falls nicht anders angegeben, werden die Getriebemotoren **komplett mit Synthetiköl** der Viskositätsklasse ISO VG 220 **geliefert**, das für die meisten Anwendungen in normaler Industrieumgebung geeignet ist. Bei abweichenden Anwendungsbedingungen oder spezifischen Anforderungen wenden Sie sich bitte an Rossi S.p.A. Die folgende Tabelle gibt einen allgemeinen Leitfaden für die Auswahl der Schmierstoffviskosität (durchschnittlicher cSt-Wert der kinematischen Viskosität bei 40 °C).

Drehzahl n ₂ [min ⁻¹]	Umgebu Mine	n <mark>gstemperatur</mark> ralöl	T _{amb} [C°] Synthetiköl
4	0 ÷ 20	10 ÷ 40	0 ÷ 40
> 224	150	150	150
224 ÷ 22,4	150	220	220
22,4 ÷ 5,6	220	320	320
< 5,6	320	460	460

Umgebungstemperaturspitzen von \pm 10 °C für Mineralöle und \pm 20 °C für Synthetiköle sind in Bezug auf die in der Tabelle angegebenen Bedingungen zulässig.

8.1.5 Ölwechselintervallen

Richtungsweisend für das Ölwechselintervall ohne Außenverunreinigung gilt die Übersichtstabelle. Bei starken Überbelastungen, die Richtwerte halbieren.

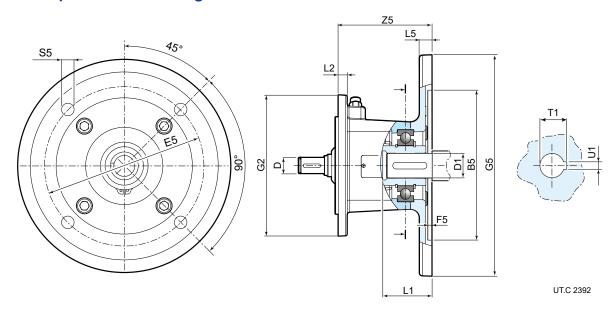
Öltemperatur	Ölwechselintervall [h]								
[C°]	Mineralöl	Synthetiköl							
≤ 65	8000	25000							
65 ÷ 80	4000	18000							
80 ÷ 95	2000	12500							

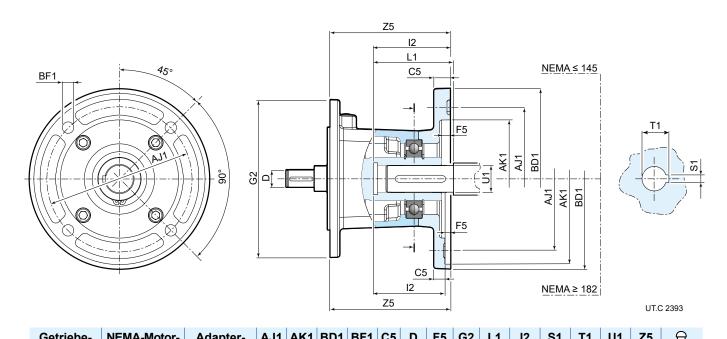
Dichtringe:

Die Lebensdauer hängt von vielen Faktoren wie Umlaufgeschwindigkeit, Temperatur, Umweltbedingungen, usw.; sie kann in der Größenordnung von 3150 bis 12500 h schwanken.

8.1.6 Entlüftungsschrauben

Die Getriebemotoren werden komplett mit einer Entlüftungsschraube (Metall) geliefert, dessen Ventil je nach Bauform in der richtigen Position montiert ist (außer bei der Bauform BX, siehe Seite 62).


Vor der Inbetriebnahme muss die Entlüftung durch Abreißen der Verschlusslasche an der Schraube aktiviert werden. Es ist darauf zu achten, dass die Entlüftung frei von Verschmutzungen gehalten wird, die ihre Funktion beeinträchtigen könnten. Wenn dies nicht möglich ist, wenden Sie sich an Rossi S.p.A., um eine andere Lösung zu finden.


Motoradapter

8.2.1 Adapter für die Montage von IEC-Standardmotoren

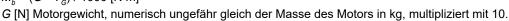
Getriebe- größe	IEC-Motor- größe	Adapter- Code	B5 Ø H7	D Ø	D1 Ø F6	E5	F5	G2 Ø	G5 Ø	L1	L2	L5	S5 Ø	T1	U1 F9	Z 5	kg
	63	AB12BI063	95	10	11	115	4	120	140	27	8	10	8,5	12,8	4	56,5	2,6
iC 27	71	AB12BI071	110	10	14	130	4,5	120	160	32	8	11	8,5	16,3	5	56,5	2,9
iC 37	80	AB12CI080	130	12	19	165	4,5	120	200	41,5	8	12	11	21,8	6	111	6,4
iO 373	90	AB12DI090	130	14	24	165	4,5	120	200	52	8	12	11	27,3	8	111	6,4
	100, 112MA	AB12EI100	180	16	28	215	5	120	250	62	8	14	13	31,3	8	113	7,6
	63	AB16BI063	95	10	11	115	4	160	140	27	10	10	8,5	12,8	4	50,5	3
iC 47	71	AB16BI071	110	10	14	130	4,5	160	160	32	10	11	8,5	16,3	5	50,5	3,2
iC 57	80	AB16CI080	130	12	19	165	4,5	160	200	41,5	10	12	11	21,8	6	104	7,4
iC 67 iO 473	90	AB16DI090	130	14	24	165	4,5	160	200	52	10	12	11	27,3	8	104	7,4
iO 573	100, 112MA	AB16EI100	180	16	28	215	5	160	250	62	10	14	13	31,3	8	106	8,6
iO 673	112M	AB16FI112	180	18	28	215	5	160	250	62	10	14	13	31,3	8	106	8,6
	132S, M	AB16GI13S	230	22	38	265	5	160	300	82	10	16,5	13	41,3	10	145	13,6
	63	AB20BI063	95	10	11	115	4	200	140	27	12	10	8,5	12,8	4	44,5	3,8
	71	AB20BI071	110	10	14	130	4,5	200	160	32	12	11	8,5	16,3	5	44,5	3,9
	80	AB20CI080	130	12	19	165	4,5	200	200	41,5	12	12	11	21,8	6	98	8,1
iC 77	90	AB20DI090	130	14	24	165	4,5	200	200	52	12	12	11	27,3	8	98	8,1
IO 77	100, 112MA	AB20EI100	180	16	28	215	5	200	250	62	12	14	13	31,3	8	100	9,3
10 110	112M	AB20FI112	180	18	28	215	5	200	250	62	12	14	13	31,3	8	100	9,3
	132S, M	AB20GI13S	230	22	38	265	5	200	300	82	12	16,5	13	41,3	10	139	15
	132MB	AB20HI13L	230	28	38	265	5	200	300	82	12	16,5	13	41,3	10	139	15
	160	AB20HI160	250	28	42	300	6	200	350	112	12	18	18	45,3	12	186	26,6
	80	AB25CI080	130	12	19	165	4,5	250	200	41,5	14	12	11	21,8	6	94	9,2
	90	AB25DI090	130	14	24	165	4,5	250	200	52	14	12	11	27,3	8	94	9,2
	100, 112MA	AB25EI100	180	16	28	215	5	250	250	62	14	14	13	31,3	8	96	10,4
iC 87	112M	AB25FI112	180	18	28	215	5	250	250	62	14	14	13	31,3	8	96	10,4
iO 873	132S, M	AB25GI13S	230	22	38	265	5	250	300	82	14	16,5	13	41,3	10	134	15,7
	132MB	AB25HI13L	230	28	38	265	5	250	300	82	14	16,5	13	41,3	10	134	15,7
	160	AB25HI160	250	28	42	300	6	250	350	112	14	18	18	45,3	12	181	28,7
	180	AB25LI180	250	32	48	300	6	250	350	112	14	18	18	51,8	14	181	28,3
	80	AB30Cl080	130	12	19	165	4,5	300	200	41,5	14	12	11	21,8	6	86	11,2
	90	AB30DI090	130	14	24	165	4,5	300	200	52	14	12	11	27,3	8	86	11,2
	100, 112MA	AB30EI100	180	16	28	215	5	300	250	62	14	14	13	31,3	8	88	12,4
iC 97	112M	AB30FI112	180	18	28	215	5	300	250	62	14	14	13	31,3	8	88	12,4
iO 97	132S, M	AB30GI13S	230	22	38	265	5	300	300	82	14	16,5	13	41,3	10	129	18
	132MB	AB30HI13L	230	28	38	265	5	300	300	82	14	16,5	13	41,3	10	129	18
	160	AB30HI160	250	28	42	300	6	300	350	112	14	18	18	45,3	12	175	30,4
	180	AB30Ll180	250	32	48	300	6	300	350	112	14	18	18	51,8	14	175	30,4
	200	AB30MI200	300	38	55 (E6)	350	6	300	400	113	14	18	18	59,3	16	205,5	40

8.2.2 Adapter für die Montage von NEMA C-Face-Standardmotoren

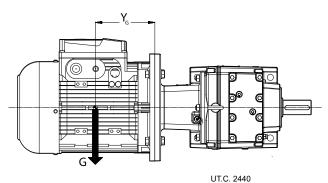
Getriebe-	NEMA-Motor-	Adapter-	AJ1	AK1	BD1		C5	D	F5	G2	L1	12	S1	T1	U1	Z 5	∰ kg
größe	größe	Code	Ø inch	Ø inch	Ø inch	Ø		Ø		Ø			inch		Ø inch		kg
	56	AB12BN056	5 7/8	4 1/2	6,5	10,5	10	10	5	120	54,7	59,5	3/16	18	5/8	81	3,3
iC 27	143	AB12CN143	5 7/8	4 1/2	6,5	10,5	12	12	5	120	64,2	61	3/16	24,5	7/8	113	5,8
iC 37 iO 373	145	AB12DN145	5 7/8	4 1/2	6,5	10,5	12	14	5	120	64,2	61	3/16	24,5	7/8	113	5,8
10 070	182	AB12EN182	5 7/8	4 1/2	9	14,5	14	16	5,5	120	79,2	76	1/4	31,5	1 1/8	124	8,1
iC 47	56	AB16BN056	5 7/8	4 1/2	6,5	10,5	10	10	5	160	54,7	59,5	3/16	18	5/8	75	3,6
iC 47	143	AB16CN143	5 7/8	4 1/2	6,5	10,5	12	12	5	160	64,2	61	3/16	24,5	7/8	106	6,8
iC 67	145	AB16DN145	5 7/8	4 1/2	6,5	10,5	12	14	5	160	64,2	61	3/16	24,5	7/8	106	6,8
iO 473	182	AB16EN182	7 1/4	8 1/2	9	14,5	14	16	5,5	160	79,5	76	1/4	31,5	1 1/8	117	9,1
iO 573 iO 673	184	AB16FN184	7 1/4	8 1/2	9	14,5	14	18	5,5	160	79,2	76	1/4	31,5	1 1/8	117	9,1
10 07 3	213/215	AB16GN213	7 1/4	8 1/2	9	14,5	14	22	5,5	160	97,3	91	5/16	38,6	1 3/8	152	12,1
	56	AB20BN056	5 7/8	4 1/2	6,5	10,5	10	10	5	200	54,7	59,5	3/16	18	5/8	69	4,3
	143	AB20CN143	5 7/8	4 1/2	6,5	10,5	12	12	5	200	64,2	61	3/16	24,5	7/8	100	7,5
iC 77	145	AB20DN145	5 7/8	4 1/2	6,5	10,5	12	14	5	200	64,2	61	3/16	24,5	7/8	100	7,5
iO 77	182	AB20EN182	7 1/4	8 1/2	9	14,5	14	16	5,5	200	79,2	76	1/4	31,5	1 1/8	111	9,8
	184	AB20FN184	7 1/4	8 1/2	9	14,5	14	18	5,5	200	79,2	76	1/4	31,5	1 1/8	111	9,8
	213/215	AB20GN213	7 1/4	8 1/2	9	14,5	14	22	5,5	200	97,3	91	5/16	38,6	1 3/8	146	13,5
	254/256	AB20HN254	7 1/4	8 1/2	10	14,5	14	28	5,5	200	115,3	109	3/8	45,6	1 5/8	232	26,4
	143	AB25CN143	5 7/8	4 1/2	6,5	10,5	12	12	5	250	64,2	61	3/16	24,5	7/8	96	8,6
	145	AB25DN145	5 7/8	4 1/2	6,5	10,5	12	14	5	250	64,2	61	3/16	24,5	7/8	96	8,6
iC 87	182	AB25EN182	7 1/4	8 1/2	9	14,5	14	16	5,5	250	79,2	76	1/4	31,5	1 1/8	107	10,9
iO 873	184	AB25FN184	7 1/4	8 1/2	9	14,5	14	18	5,5	250	79,2	76	1/4	31,5	1 1/8	107	10,9
	213/215	AB25GN213	7 1/4	8 1/2	9	14,5	14	22	5,5	250	97,3	91	5/16	38,6	1 3/8	141	14,3
	254/256	AB25HN254	7 1/4	8 1/2	10	14,5	14	28	5,5	250	115,3	109	3/8	45,6	1 5/8	227	28,4
	284/286	AB25LN284	9	10 1/2	-	14,5	16	32	5,5	250	134,3	128	1/2	53,4	1 7/8	229	29,5
	143	AB30CN143	5 7/8	4 1/2	6,5	10,5	12	12	5	300	64,2	61	3/16	24,5	7/8	88	10,6
	145	AB30DN145	5 7/8	4 1/2	6,5	10,5	12	14	5	300	64,2	61	3/16	24,5	7/8	88	10,6
	182	AB30EN182	7 1/4	8 1/2	9	14,5	14	16	5,5	300	79,2	76	1/4	31,5	1 1/8	99	12,9
iC 97	184	AB30FN184	7 1/4	8 1/2	9	14,5	14	18	5,5	300	79,2	76	1/4	31,5	1 1/8	99	12,9
iO 973	213/215	AB30GN213	7 1/4	8 1/2	9	14,5	14	22	5,5	300	97,3	91	5/16	38,6	1 3/8	136	16,4
	254/256	AB30HN254	7 1/4	8 1/2	10	14,5	14	28	5,5	300	115,3	109	3/8	45,6	1 5/8	221	30,2
	284/286	AB30LN284	9	10 1/2		14,5	16	32	5,5	300	134,3	128	1/2	53,4	1 7/8	223	31,3
	324/325	AB30MN324	11	12 1/2	14	18	20	38	5,5	300	150,3	144	1/2	59,7	2 1/8	208	41

Bau- und Betriebsdetails

8.3


IEC- oder NEMA-Motoreinbau auf Adapter

Prüfen, ob das statische Biegemoment $M_{\rm b}$, das durch das Gewicht des motors auf dem Gegenflansch des Adapters erzeugt wird, kleiner ist als der zulässige Wert $M_{\rm bmax}$, der in der nachstehenden Tabelle angegeben ist:


$$M_b < M_{bmax}$$

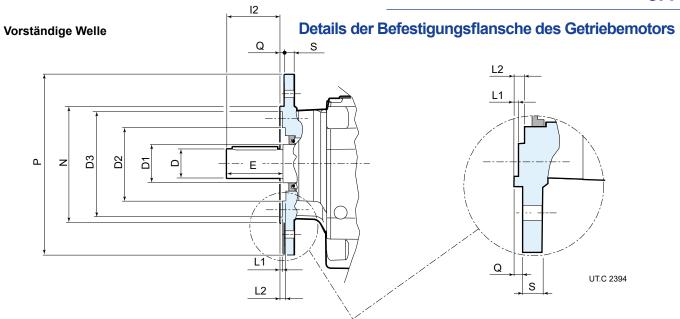
wobei:

 $M_b = (G \cdot Y_G) / 1000 [N m]$

 $Y_{_{\rm G}}$ [mm] Abstand des Motorschwerpunkts von der Flanschfläche

Zu lange und zu dünne Motoren können, auch wenn das Biegemoment unter den vorgeschriebenen Tabellenwerten liegt, während des Betriebs anormale Vibrationen erzeugen.

In solchen Fällen muss eine geeignete zusätzliche Motorunterstützung vorgesehen werden (siehe spezifische Motordokumentation).

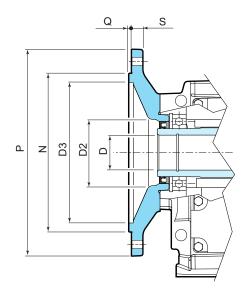

Bei dynamischen Anwendungen können höhere als die zulässigen Belastungen auftreten, wenn der Getriebemotor einer Translation, Rotation oder Oszillation ausgesetzt ist: Wenden Sie sich an Rossi, um eine Studie für jeden spezifischen Fall zu erhalten

Max Biegemoment M_{bmax} bez. IEC Motoradapter

IFO A dantar Oa da	Max	Max Biegemoment M _{bmax} [N m]							
IEC Adapter-Code	iC 27, iC 37 iO 37	iC 47 iC 67 iO 47 iO 67							
AB12BI063, AB12BI071, AB16BI063, AB16BI07, AB20BI063, AB20BI071		55							
AB12Cl080, AB12Dl090, AB16Cl080, AB16Dl090, AB20Cl080, AB20Dl090 AB25Cl080, AB25Dl090, AB30Cl080, AB30Dl090	90		265						
AB12EI0100, AB16EI0100, AB16FI0112, AB20EI0100, AB20FI0112 AB25EI0100,AB25FI0112, AB30EI0100, AB30FI0112	200								
AB16GI13S, AB20GI13S, AB25GI13S, AB30GI13S		290		870					
AB20HI13L, AB25HI13L, AB30HI13L				070					
AB20HI160, AB25HI160, AB30HI160			935	11:	55				
AB25LI180, AB30LI180		·		113					
AB30MI200					1645				

Max Biegemoment M_{bmax} bez. NEMA Motoradapter

NEMA Adapter-Code	Max	Max Biegemoment M _{bmax} [N m]							
NEWA Adapter-Code	iC 27, iC 37 iO 37	iC 47 iC 67 iO 47 iO 67							
AB12BN056, AB16BN056, AB20BN056		45							
AB12CN143, AB12DN145, AB16CN143, AB16DN145, AB20CN143 AB20DN145, AB25CN143, AB25DN145, AB30CN143, AB30DN145	72								
AB12EN182, AB16EN182, AB16FN184, AB20EN182, AB20FN184, AB25EN182, AB25FN184, AB30EN182, AB30FN184	161	161							
AB16GN213, AB20GN213, AB25GN213, AB30GN213		251		656					
AB20HN254, AB25HN254, AB30HN254		740		1003					
AB25LN284, AB30LN284				1003					
AB30MN324					1430				



Getriebe- größe	B5-Flansch Code	P Ø	N Ø j6	S	D Ø k6	D1 Ø	D2 Ø	D3 Ø	Q	12	E	L1	L2
	F212	120	80	8	25	30	56	66	3	50	50	2	6
iC 27	F214	140	95	9	25	30	56	80	3	50	50	2	6
	F216	160	110	10	25	30	56	94	3,5	50	50	2,6	6,5
	F312	120	80	8	25	35	63	68	3	50	50	5	7
iC 37	F314	140	95	10	25	35	11	83	3	50	50	5	7
IC 37	F316	160	110	10	25	35	61	96	3,5	50	50	2	7,5
	F320	200	130	12	25	35	61	118	3,5	50	50	1	7,5
	F414	140	95	10	30	35	77	82	3	60	60	4	6
iC 47	F416	160	110	10	30	35	75	96	3,5	60	60	1	6,5
	F420	200	130	12	30	35	75	116	3,5	60	60	1	6,5
	F516	160	110	10	35	40	82	97	3,5	70	70	4	6,5
iC 57	F520	200	130	12	35	40	78	116	3,5	70	70	-0,5	6,5
	F525	250	180	15	35	40	78	160	4	70	70	0	7
iC 67	F620	200	130	12	35	50	96	120	3,5	70	70	3,5	7
IC 67	F625	250	180	15	35	50	92	162	4	70	70	0,5	7,5
iC 77	F725	250	180	15	40	52	94	160	4	80	80	0,5	7
IC 77	F730	300	230	18,5	40	52	113	210	4	80	80	0,5	7
iC 87	F830	300	230	18,5	50	62	119	214	4	100	100	0	8
10 07	F835	350	250 h6	18	50	62	138	225	5	100	100	0	8
iC 97	F935	350	250 h6	18	60 m6	72	146	234	5	120	120	1	9
IC 97	F945	450	350 h6	22	60 m6	72	156	320	5	120	120	1	9

Getriebe- größe	B5-Flansch Code	P Ø	N Ø j6	S	D Ø k6	D1 Ø	D2 Ø	D3 Ø	Q	12	E	L1	L2
iO 373	F316	160	110	10	25	35	61	96	3,5	50	50	2	7,5
iO 473	F420	200	130	12	30	35	75	116	3,5	60	60	1	6,5
iO 573	F525	250	180	15	35	40	78	160	4	70	70	0	7
iO 673	F625	250	180	15	40	50	92	162	4	70	70	0,5	7,5
iO 773	F730	300	180	15	50	52	94	160	4	80	80	0,5	7
iO 873	F835	350	250 h6	18	60 m6	62	138	225	5	100	100	0	8
iO 973	F945	450	350 h6	22	70 m6	72	156	320	5	120	120	1	9

Hohlwelle

UT.C 2541

Getriebe- größe	B5-Flansch Code	P Ø	N Ø j6	S	D Ø H7	D2 Ø	D3 Ø	Q
iO 373	F316	160	110	10	25	61	96	3,5
iO 473	F420	200	130	12	35	75	116	3,5
iO 573	F525	250	180	15	40	78	160	4
iO 673	F625	250	180	15	40	92	162	4
iO 773	F730	300	180	15	50	94	160	4
iO 873	F835	350	250 h6	18	60	138	225	5
iO 973	F945	450	350 h6	22	70	156	320	5

8.5

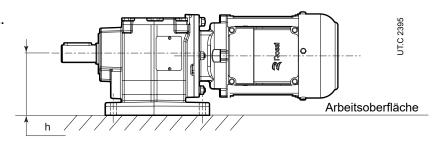
Befestigungsschrauben

Ausser abweichender Angabe ist es normalerweise ausreichend, die Schrauben in Klasse 8.8 zu verwenden; Eine Ausnahme bilden die folgenden Fälle, in denen Schrauben der Festigkeitsklasse 10.9 verwendet werden müssen:

- iC 372 iC 373 FE mit Flansch F312
- iC 472 iC 473 FE mit Flansch F414
- iC 572 iC 573 FE mit Flansch F516

Entfetten Sie die Schrauben vor dem Anzug gründlich. Bei den Befestigungsschrauben und bei den Passungsflächen empfehlen wir die Anwendung von Starkklebern, insbesondere bei starken Vibrationen, Schwerlastbetrieb und/oder häufigen Bewegungsumkehrungen.

Ziehen Sie die Schrauben mit dem in der Tabelle angegebenen Anzugsmoment an.


Befestigungs- schrauben	Anzugsm für Fuß- un befestigung [N	id Flansch- sschrauben				
	KI. 8.8	Kl. 10.9				
M4	2,9	4				
M5	6	8,5				
M6	11	15				
M8	25	35				
M10	50	70				
M12	85	120				
M14	135	190				
M16	205	290				
M18	280	400				
M20	400	560				
M22	550	770				
M24	710	1000				

Abmessungstoleranzen

Achshöhe Ausführung mit Füßen iC/iO...P...

 $h \le 250 \text{ mm} \longrightarrow \text{Toleranz -0,5} \div 0 \text{ mm}$ h > 250 mm → Toleranz -1 ÷ 0 mm

Achtung!

Überprüfen Sie immer, dass der Motor nicht aus der Fußfläche herausragt.

Langsamalufendes Wellenende

 \emptyset D \leq 50 mm \longrightarrow Toleranz ISO k6 Außendurchmesser:

Ø D > 50 mm → Toleranz ISO m6

Kopfseit. Gewindebohrung: Ø D ≤ 24 mm \rightarrow M8

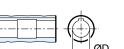
> \emptyset D > 24 ÷ 30 mm \longrightarrow M10 \emptyset D > 30 ÷ 38 mm \longrightarrow M12 \emptyset D > 38 ÷ 50 mm \longrightarrow M16

Ø D > 50 mm \rightarrow M20

Passfeder und Passfedernut:

Passfeder nach DIN 6885

Breite der Passfedernut nach ISO N9

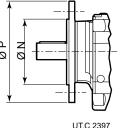


Innendurchmesser:

Passfeder und Passfedernut:

Passfeder nach DIN 6885

Breite der Passfedernut nach ISO N9

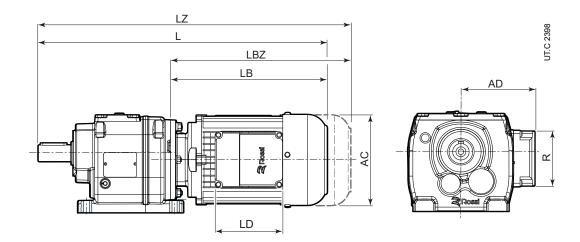


forma DR

Flanschen

Zentrierung: \emptyset N \leq 230 mm (\emptyset P 120 \div 300 mm) \longrightarrow Toleranz ISO j6

 \emptyset N > 230 mm (\emptyset P 350 ÷ 450 mm) \longrightarrow Toleranz ISO h6



UT.C 2397

Hinweise zu den Abmessungen

8.7.1 Angaben zu den Abmessungen der HB- und HBZ-Motoren

Die Bedeutung der in den Zeichnungen in Kapitel 10 und 12 angegebenen Gesamtabmessungen wird im Folgenden erläutert:

wobei:

L Gesamtlänge des Getriebemotors

LZ Gesamtlänge des Getriebemotors mit Bremse

LB Gesamtlänge des Motors

LBZ Gesamtlänge des Motors mit Bremse
 AC Durchmesser der Motorlüfterhaube
 LD Länge des Motorklemmenkastens

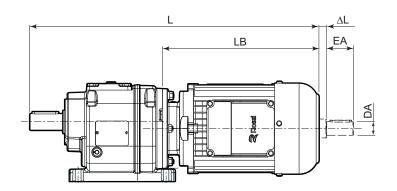
LBZ Radiale Abmessungen des Motorklemmenkastens

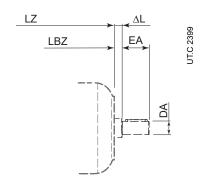
R Breite des Motorklemmenkastens

Die Länge des Motors und die Größe des Klemmenkastens können sich je nach Vorhandensein bestimmter Motoroptionen geringfügig ändern; siehe ggf. Kat. TX. oder Rossi S.p.A. rückfragen.

Ösen und Ösenschrauben zum Anheben:

Die Größen ≤ iC 57... sind mit einer Hebeöse zur Handhabung ausgestattet. Die größeren Größen sind mit Ösenschrauben ausgestattet.


Alle Kegelstirnradgetriebemotoren iO sind mit einem Hubloch am Gehäuse für den Transport ausgestattet.


Entlüftungsschrauben:

Die Maßzeichnungen in Kap. 10 und 12 enthalten keine Angaben zur Größe des Entlüftungsdeckels, da seine Position von der Bauform abhängt.

Die Gesamtabmessungen können daher geringfügig von den angegebenen Werten abweichen.

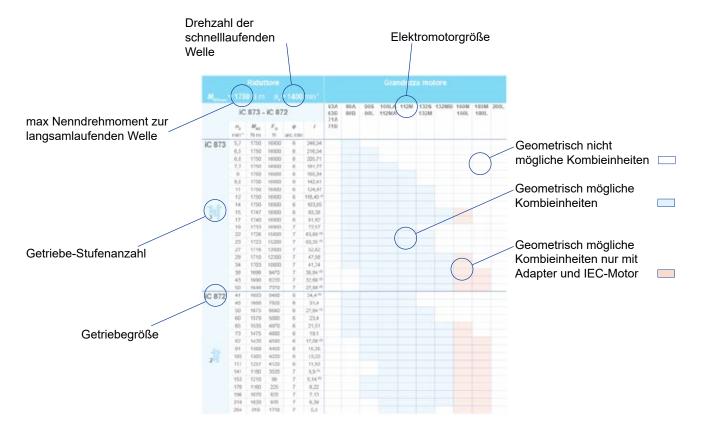
8.7.2 Angaben zu den Abmessungen des zweiten Antriebswellenendes

Motorgröße	Leistung	Polig	DA Ø	EA	Δ L ≈
63	A, B	2, 4, 6	11	23	5
71	A, B	2, 4, 6	11	23	5
80	A, B	2, 4, 6	14	30	7
90	S, L, LA	2, 4, 6	14	30	7
100	LA	2, 4, 6	14	30	8
112	MA	4	14	30	8
112	M	2, 4, 6	19	40	9
132	S, SB	2, 4, 6	19	40	9
132	M	4	19	40	9
132	МВ	4	28	60	9

Auswahltabellen Koaxial - iC

Sektioninhalt

9.1	Geometrisch mögliche Kombieinheiten	84
	9.1.1 Allgemeines	84
	9.1.2 Zeichenerklärung	84
9.2	Geometrische Kupplungstabellen	85
9.3	Herstellungsprogramm [kW]	94


Mögliche geometrische Kombieinheiten

9.1.1 Allgemeines

Die Tabellen auf den folgenden Seiten zeigen die Möglichkeiten der geometrischen Kupplung mit 4-poligen HB-Motoren in Abhängigkeit vom Zahnradgetriebe (2 oder 3 Untersetzungsstufen) und der Getriebeübersetzung. Die Drehzahlen der langsamlaufenden Welle n_2 sind ebenfalls angegeben, berechnet under der Annahme einer Nennantriebsdrehzahl von n_1 = 1400 min⁻¹. Die Werte des Nenndrehmoments an der langsamlaufenden Welle M_{N2} und der zulässigen Radialbelastung $F_{r,2}$, die in der Mittellinie wirkt, beziehen sich ebenfalls auf diese Drehzahl.

Zum Zeitpunkt der Auswahl müssen die tatsächlichen Betriebsbedingungen in Bezug auf die tatsächliche Leistung des Motors, wie im Kapitel 6 angegeben, bewertet werden.

9.1.2 Zeichenerklärung

wobei

- n₂ Drehzahl der langsamlaufenden Welle
- M_{N2} Nenndrehmoment der langsamlaufenden Welle
- $F_{r_2}^{N2}$ zulässige Radialbelastung bei der Mittellinie der langsamlaufenden Welle (bei der Drehzahl n_2 und dem Drehmoment M_{N2} in der Tabelle angegeben gültig nur bei fußbefestigtem Getriebemotor)
- φ reduziertes Winkelspiel, bezogen auf die langsamlaufende Welle (Toleranz ± 2 arc min - wenn der Wert nicht angegeben ist, ist die Option des reduzierten Winkelspiels nicht verfügbar)
- i Übersetzung

iC

Geometrische Kupplungstabellen

		Getri	iebe						I	Notor	größe	,			
M _{N2max} =	= 145	N m	n ₁ =	= 1400	min ⁻¹										
		iC 2	7			63A 63B 71A	80A 80B	90S 90L	100LA 112MA	112M	132S 132M	132MB	160M 160L	180M 180L	200L
	n ₂ min ⁻¹	M _{N2} N m	F _{r2}	φ arc min	i	71B									
:0.070	10	145	4230	-	135,09										
iC 273	11	145	4230	-	123,91										
	13	144	4230	-	105,49										
	15	143	4230	-	90,96										
	17	143	4230	-	84,78										
	19	142	4230	-	74,11										
	20	142	4180	-	69,47										
	23	142	3980	-	61,3										
3	25	141	3840	-	55,87										
	29	141	3630	_	48,17										
	31	140	3530	-	44,9										
	36	140	3350	_	39,25										
	38	139	3260	-	36,79										
	43	139	3100	-	32,47										
	49	138	2950	-	28,78										
	57	138	2760	-	24,47										
iC 272	49	138	2940	-	28,37										
10 272	54	138	2840	-	26,09										
	63	137	2660	-	22,32										
	72	137	2510	-	19,35										
	77	136	2440	-	18,08										
	90	136	2290	-	15,63										
	105	135	2140	-	13,28 (1)										
_	118	134	1980	-	11,86										
	138	134	1890	-	10,13										
2	149	130	900	-	9,41										
	172	123	870	-	8,16										
	183	120	900	-	7,63 (1)										
	212	110	880	-	6,59										
	250	102	880	-	5,6 (1)										
	280	96	860	-	5 ⁽¹⁾										
	328	87	920	-	4,27										
	350	85	900	-	4 (1)										
	415	79	900	-	3,37										

 $^{^{(1)}}$ Endliche Übersetzung i

	Getriebe $M_{N2max} = 224 \text{ N m} \qquad n_1 = 1400 \text{ min}^{-1}$								I	Motor	größe				
M _{N2max} =	224	N m	n,=	= 1400	min ⁻¹										
		iC 3				63A 63B 71A	80A 80B	90S 90L	100LA 112MA	112M	132S 132M	132MB	160M 160L	180M 180L	200L
	n ₂	M _{N2}	F _{r2}	φ	i	71B									
	min ⁻¹	N m	N	arc min	10100										
iC 373	10	217	4940	8	134,82										
	11	214	4940	8	123,66										
	13	213	4940	8	105,28										
	15	212	4940	8	90,77										
	17	212	4940	8	84,61										
	19	211	4940	8	73,96										
	20	211	4940	8	69,33										
2	23 25	210	4940 4940	9	61,18 55,76										
3	29	208	4940	9	48,08										
	31	208	4940	9	44,81										
	36	207	4760	9	39,17										
	38	206	4540	9	36,72										
	43	206	4120	9	32,4										
	49	205	3740	9	28,73										
	57	204	3240	9	24,42										
iC 372	49	205	3690	8	28,32										
10 372	54	204	3860	8	26,03										
	63	203	2970	8	22,27										
	73	202	2570	8	19,31										
	78	202	2390	8	18,05										
	90	201	2010	8	15,6										
	106	198	1880	8	13,25										
	118	189	1810	8	11,83										
	138	177	1820	9	10,11										
2	148	172	1760	9	9,47										
	176	160	1720	9	7,97										
	210	145	1000	13	6,67										
	247	142	760	13	5,67										
	277	135	790	13	5,06										
	324	126	820	13	4,32										
	346	122	840	14	4,05										
	411	112	900	14	3,41										

		Getri	iebe						ı	Motor	größe				
M _{N2max} :	= 335	N m	n ₁ :	= 1400	min ⁻¹										
		iC 4	7			63A 63B 71A	80A 80B	90S 90L	100LA 112MA	112M	132S 132M	132MB	160M 160L	180M 180L	200L
	n ₂	<i>M</i> _{N2}	F _{r2}	φ	i	71B									
10 1-0	min ⁻¹	N m	N	arc min	470.00										
iC 473	7,9 8,6	335 335	5420 5420	7	176,88 162,94										
	10	335	5420	7	139,99										
	11	335	5420	7	121,87										
	12	335	5420	7	114,17										
	14	335	5420	7	100,86										
		335	5420	7											
	15 16	335	5420	7	93,68 84,9										
	18	335	5420	7	76,23										
		335	5420												
2	20		5420	8	68,54										
3		335		8	64,21										
	25	335	5420	8	56,73										
	27	335	5350	8	52,69										
	29	335	5140	8	47,75										
	33	335	4930	8	42,87										
	38	335	4630	8	36,93										
	40	335	4520	8	34,73										
	47	335	4240	8	29,88										
	52	335	4050	8	26,7										
10 1-0	59	335	3840	8	23,59										
iC 472	41	272	4680	7	33,79										
	45	243	4610	7	31,12										
	52	335	4050	7	26,74										
	60	335	3820	7	23,28										
	64	335	3710	7	21,81										
	73	324	3530	7	19,27										
	78	315	3390	7	17,89										
	86	304	3350	7	16,22										
	96	292	3230	7	14,56										
4	112	275	3080	8	12,54										
2	119	268	3020	8	11,79										
_ =	138	252	2880	8	10,15										
	154	239	2780	8	9,07										
	175	228	2690	8	8,01										
	180	185	2720	10	7,76 ⁽¹⁾										
	201	180	2620	10	6,96										
	233	175	2470	10	6										
	248	175	2410	10	5,64 ⁽¹⁾										
	289	170	2280	11	4,85										
	323	165	2190	12	4,34										
	366	160	2080	12	3,83										

⁽¹⁾ Endliche Übersetzung i

		Getri	iebe							Motor	größe	,			
M _{N2max} =	= 500	N m	n,=	= 1400	min ⁻¹										
NEITHAX		iC 5				63A 63B 71A	80A 80B	90S 90L	100LA 112MA	112M	132S 132M	132MB	160M 160L	180M 180L	200L
	n ₂	M _{N2}	F _{r2}	φ	i	71B									
	min ⁻¹	N m	N	arc min											
iC 573	7,5	500	7100	7	186,89										
	8,1	500	7100	7	172,17										
	9,5	500	7100	7	147,92										
	11	496	7100	7	128,77										
	12	492	7100	7	120,63										
	13	490	7100	7	106,58										
	14	488	7100	7	98,99										
	16	487	7100	7	89,71										
	17	485	7100	7	80,55										
	20	483	7100	8	69,23										
3-1	22	482	6980	8	64,85										
	24	480	6630	8	57,29										
	26	479	6430	8	53,22										
	29	478	6170	8	48,23										
	32	476	5900	8	43,3										
	38	474	5530	8	37,3 (1)										
	40	473	5390	8	35,07										
	46	471	5040	8	30,18										
	52	469	4800	8	26,97										
iC 572	53	469	4750	7	26,31										
	56	468	4640	7	24,99 (1)										
	64	466	4370	7	21,93										
	75	463	4050	7	18,6 ⁽¹⁾										
	83	462	3860	7	16,79										
	95	460	3690	7	14,77 (1)										
	100	459	3610	7	13,95 ⁽¹⁾										
ا	118	450	3430	7	11,88										
	130	437	3330	8	10,79										
2	150	412	3180	8	9,35										
	155	387	2010	9	9,06										
	176	366	2020	9	7,97										
	186	355	1950	9	7,53										
	218	335	1770	9	6,41										
	241	320	1820	10	5,82										
	277	305	1730	10	5,05										
	319	280	1900	11	4,39										

 $^{^{(1)}}$ Endliche Übersetzung i

		Getri	iebe						N	Motor	größe				
M _{N2max} :	= 670	N m	n ₁ :	= 1400	min ⁻¹										
- WEMAX		iC 6				63A 63B 71A	80A 80B	90S 90L	100LA 112MA	112M	132S 132M	132MB	160M 160L	180M 180L	200L
	n ₂ min ⁻¹	M _{N2} N m	F _{r2}	φ arc min	i	71B									
iC 673	7	670	7560	7	199,81										
10 010	7,6	670	7560	7	184,07										
	8,9	670	7560	7	158,14										
	10	670	7560	7	137,67										
	11	670	7560	7	128,97										
	12	670	7560	7	113,94										
	13	670	7560	7	105,83										
	15	670	7560	7	95,91										
_	16	670	7560	7	86,11										
	19	670	7560	7	74,17										
3	20	670	7560	7	69,75										
	23	670	7560	7	61,26										
	25	670	7560	7	56,89										
	27	668	7560	8	51,56										
	30	643	7560	8	46,29										
	35	611	7790	8	39,88 (1)										
	37	598	7900	8	37,5										
	43	567	8210	8	32,27										
	49	545	8400	8	28,83										
iC 672	50	600	8210	6	28,13										
	52	600	8210	6	26,72										
	60	630	8010	7	23,44										
	70	655	7560	7	19,89										
	78	633	7330	7	17,95										
	89	606	7130	7	15,79										
	94	590	6980	7	14,91										
	110	541	6640	7	12,7										
	121	515	6500	7	11,54										
	140	477	6220	7	10										
	161	442	5960	7	8,7 (1)										
2	180	380	5830	9	7,79										
231	190	370	5790	9	7,36 (1)										
	223	330	5590	9	6,27										
	246	310	5450	10	5,7										
	284	290	5210	10	4,93										
	326	270	5000	10	4,29										

⁽¹⁾ Endliche Übersetzung i

		Getr	iebe						N	Motor	größe				
M _{N2max} =	= 925	N m	n ₁ :	= 1400	min ⁻¹										
		iC 7				63A 63B 71A	80A 80B	90S 90L	100LA 112MA	112M	132S 132M	132MB	160M 160L	180M 180L	200L
	n ₂ min ⁻¹	M _{N2} N m	F _{r2}	φ arc min	i	71B									
iC 773	7.2	925	9920		195,24 ⁽¹⁾										
10 113	8.4	925	9920	7	166,59										
	9.6	925	9920	7	145,67										
	10	925	9920	7	138,39										
	12	916	9920	7	121,42										
	14	911	9920	7	102,99										
	15	908	9920	7	92,97										
	17	905	9920	7	81,8										
	18	903	9920	7	77,24										
	21	899	9920	7	65,77										
3 1	24	895	9920	8	57,68										
	27	892	9920	8	52,07										
	31	888	9920	8	45,81										
	32	887	9920	8	43,26										
	38	876	9920	8	36,83										
	42	849	9920	8	33,47										
	48	820	9920	8	29										
	55	780	10100	8	25,23										
iC 772	60	820	8870	7	23.37										
	65	820	8250	7	21.43										
	74	780	7980	7	18.8										
	79	780	7620	7	17.82 ⁽¹⁾										
	90	740	7390	7	15.6										
m _	100	720	7050	7	14.05										
	114	690	6740	7	12.33										
2	129	660	6490	7	10.88										
	145	630	6300	7	9.64										
	163	630	4110	8	8.59										
	181	610	3940	8	7.74										
	206	580	3850	8	6.79										
	234	540	3990	8	5.99 (1)										
	264	510	3990	9	5.31 (1)										

 $^{^{(1)}}$ Endliche Übersetzung i

	Getriebe $M_{N2max} = 1750 \text{ N m} n_{1} = 1400 \text{ min}$						Motorgröße								
M _{N2max}	= 175	0 N m	n ₁ =	= 1400	min ⁻¹										
		iC 8				63A 63B 71A	80A 80B	90S 90L	100LA 112MA	112M	132S 132M	132MB	160M 160L	180M 180L	200L
	n ₂ min ⁻¹	M _{N2} N m	F _{r2}	φ arc min	i	71B									
iC 873	5,7	1750	16900	6	246,54										
10 010	6,5	1750	16900	6	216,54										
	6,8	1750	16900	6	205,71										
	7,7	1750	16900	6	181,77										
	9	1750	16900	6	155,34										
	9,8	1750	16900	6	142,41										
	11	1750	16900	6	124,97										
	12	1750	16900	6	118,43 (1)										
	14	1750	16900	6	103,65										
	15	1747	16900	6	93,38										
3-1	17	1740	16900	6	81,92										
	19	1733	16900	7	72,57										
	22	1726	15800	7	63,68 (1)										
	23	1723	15200	7	60,35 (1)										
	27	1716	13500	7	52,82										
	29	1710	12300	7	47,58										
	34	1703	10800	7	41,74										
	38	1696	9470	7	36,84 (1)										
	43	1690	8220	7	32,66 (1)										
	50	1646	7370	7	27,88										
iC 872	41	1693	9480	6	34,4 (1)										
	45	1688	7820	6	31,4										
	50	1675	6640	6	27,84 (1)										
	60	1579	5000	6	23,4										
	65	1535	4970	6	21,51										
	73	1475	4800	6	19,1										
	82	1420	4580	6	17,08 ⁽¹⁾										
	91	1369	4450	6	15,35										
2	105	1305	4220	6	13,33										
2-1	117	1257	4120	6	11,93										
	141	1180	3520	7	9,9 (1)										
	153	1210	99	7	9,14 (1)										
	170	1160	225	7	8,22										
	196	1070	820	7	7,13										
	219	1020	970	7	6,39										
	264	910	1710	7	5,3 (1)										

⁽¹⁾ Endliche Übersetzung i

	Getriebe M_{N2max} = 3350 N m n ₁ = 1400 min ⁻							Motorgröße									
M _{N2max}	= 335	0 N m	n,=	= 1400	min ⁻¹												
		iC 9				63A 63B 71A	80A 80B	90S 90L	100LA 112MA	112M	132S 132M	132MB	160M 160L	180M 180L	200L		
	n ₂	$M_{_{N2}}$	F _{r2}	φ	i	71B											
	min ⁻¹	N m	N	arc min													
iC 973	4,8	3350	19800	6	289,74												
	5,5	3350	19800	6	255,71												
	5,8	3350	19800	6	241,25												
	6,5	3350	19800	6	216,28												
	7,5	3350	19800	6	186,3												
	8,2	3350	19800	6	170,02												
	9,3	3350	19800	6	150,78												
	11	3316	19800	6	126,75												
	12	3274	19800	6	116,48												
	14	3261	19800	6	103,44												
3-	15	3249	19800	6	92,48												
	17	3239	19800	6	83,15												
	19	3224	18000	6	72,17												
	21	3214	16300	7	65,21												
	23	3205	14800	7	59,92												
	26	3193	12900	7	53,21												
	29	3182	11100	7	47,58												
	33	3171	9480	7	42,78												
	38	3088	7410	7	37,13												
	42	2972	7160	7	33,25												
	51	2783	7260	7	27,58												
iC 972	44	2900	10600	6	32,05												
	51	2900	8380	6	27,19												
	56	2927	4140	6	25,03												
	63	2822	4060	6	22,37												
	70	2728	4110	6	20,14												
	77	2642	4270	6	18,24												
	87	2541	4130	6	16,17												
_الد	96	2461	4240	6	14,62												
	113	2335	3850	6	12,39												
Z • •	129	2237	3720	6	10,83												
	151	2184	-	6	9,29												
	167	2081	-	6	8,39												
	197	2000	-	6	7,12												
	225	1890	-	6	6,21												
	269	1780	-	7	5,2												
	311	1630	-	7	4,5 (1)												

 $^{^{(1)}}$ Endliche Übersetzung i

Leerseite

Herstellungsprogramm [kW]

									_		
$P_{1} = 0,1$	l2 kW							ر الا	g		p.
n ₂	M ₂	i	F _{r2}	fs			Fül	Sen	_	nsch	
min ⁻¹	N m						НВ	HBZ	НВ	HBZ	
			N								
4,7	246	195,24 (1)	12900	3,8	iC 773 - HB2 63 B 6 B20B		45	47	52	54	144
5,5	210	166,59	13000	4,4		3					
6,2	183	145,67	13000	5	, , , , , , , , , , , , , , , , , , , ,						
4,6	252	199,81	10000	2,7	iC 673 - HB2 63 B 6 B16B	3	36	38	39	41	142
4,9	232	184,07	10100	2,9		3					
5,8	199	158,14	10200	3,4							
6,6	173	137,67	10300	3,9							
7,1	162	128,97	10300	4,1							
8,0	143	113,94	10400	4,7							
6,9	167	199,81	10300	4	iC 673 - HB2 63 A 4 B16B	3	36	38	39	41	142
7,4	154	184,07	10400	4,4		3					
4,9	235	186,89	7760	2,1	iC 573 - HB2 63 B 6 B16B		28	29	31	33	140
5,3	217	172,17	7800	2,3		3					
6,2	186	147,92	7860	2,7							
7,1	162	128,77	7900	3,1							
7,5	152	120,63	7920	3,3							
8,5	134	106,58	7940	3,7							
9,2	125	98,99	7950	4							
7,3	156	186,89	7920	3,2	iC 573 - HB2 63 A 4 B16B		27	29	30	32	140
8,0	144	172,17	7940	3,5		3					
9,3	124	147,92	7960	4							
11	108	128,77	7980	4,6							
5,1	223	176,88	5730	1,5	iC 473 - HB2 63 B 6 B16B	3	21	23	22	24	138
5,6	205	162,94	5800	1,65		3					
6,5	176	139,99	5900	1,9							
7,5	153	121,87	5970	2,2							
7,7	148	176,88	6000	2,3	iC 473 - HB2 63 A 4 B16B	3	21	23	22	24	138
8,4	136	162,94	6030	2,5		3					
9,8	117	139,99	6070	2,9							
11	102	121,87	6100	3,3							
12	96	114,17	6100	3,5							
14	84	100,86	6120	4							
15	78	93,68	6130	4,3							
6,7	170	134,82	4870	1,3	iC 373 - HB2 63 B 6 B12B	3	15	17	17	19	136
7,4	156	123,66	5290	1,45		3 🕶					
8,6	133	105,28	5560	1,7							
10	114	90,77	5700	1,9							
11	107	84,61	5750	2							
12	93	73,96	5830	2,3							

 $^{^{(1)}}$ Endliche Übersetzung i

P ₁ = 0,12 kW i F ₁₂ fs min ⁻¹ N m N Füßen Flat 10 113 134,82 5750 1,95 iC 373 – HB2 63 A 4 B12B 14 16 16 11 103 123,66 5800 2,1 3 14 16 16 13 88 105,28 5880 2,4 3 14 16 16 15 76 90,77 5930 2,8 16 71 84,61 5950 3 19 62 73,96 5980 3,4 10 </th <th>p. nsch HBZ 136</th>	p. nsch HBZ 136
n ₂ M ₂ i F ₁₂ fs min ⁻¹ N m N N HB HBZ HB HBZ HB HBZ HB	HBZ
10 113 134,82 5750 1,95 iC 373 - HB2 63 A 4 B12B 14 16 16 11 103 123,66 5800 2,1 13 88 105,28 5880 2,4 15 76 90,77 5930 2,8 16 71 84,61 5950 3	
11 103 123,66 5800 2,1 13 88 105,28 5880 2,4 15 76 90,77 5930 2,8 16 71 84,61 5950 3	18 136
13 88 105,28 5880 2,4 15 76 90,77 5930 2,8 16 71 84,61 5950 3	
15 76 90,77 5930 2,8 16 71 84,61 5950 3	
16 71 84,61 5950 3	
19 62 73,96 5980 3,4	!
7,3 156 123,91 2660 0,95 iC 273 - HB2 63 B 6 B12B 14 16 16	18 134
7,3 156 123,91 2660 0,95 16 273 - HB2 63 B 6 B12B 14 16 16 16 8,6 133 105,49 3300 1,1	
10 115 90,96 3800 1,25	
11 107 84,78 3990 1,35	
12 93 74,11 4060 1,55	
10 113 135,09 3990 1,3 iC 273 - HB2 63 A 4 B12B 13 15 13	15 134
11 104 123,91 4040 1,4 3	
13 88 105,49 4110 1,65	
15 76 90,96 4170 1,9	
16 71 84,78 4200 2	
18 62 74,11 4240 2,3	
20 58 69,47 4260 2,4	
22 51 61,3 4290 2,8	
25 47 55,87 4280 3	
28 40 48,17 4090 3,5	
31 38 44,9 4000 3,7	

$P_1 = 0,1$	l8 kW										
4,7	369	195,24 (1)	12600	2,5	iC 773 - HB2 71 A 6 B20B	-	45	47	51	54	144
5,5	315	166,59	12800	2,9		3					
6,2	275	145,67	12900	3,4							
6,6	261	138,39	12900	3,5							
7,5	229	121,42	13000	4							
7,0	247	195,24 (1)	12900	3,7	iC 773 - HB2 63 B 4 B20B		45	47	51	54	144
8,2	211	166,59	13000	4,4		3					
9,3	184	145,67	13000	5							
9,8	175	138,39	13000	5,3							
4,6	377	199,81	9490	1,8	iC 673 - HB2 71 A 6 B16B	-	38	40	40	43	142
4,9	348	184,07	9660	1,95		3					
5,8	299	158,14	9900	2,2							
6,6	260	137,67	10100	2,6							
7,1	244	128,97	10100	2,8							
8,0	215	113,94	10200	3,1							
8,6	200	105,83	10300	3,4							
9,5	181	95,91	10300	3,7							
11	163	86,11	10400	4,1							
12	140	74,17	10400	4,8							
13	132	69,75	10400	5,1							

⁽¹⁾ Endliche Übersetzung i

	10 L VV								`		
$P_1 = 0,1$	18 KW	ı						k	g		p.
n ₂	M ₂	i	F _{r2}	fs			Füí	ßen	_	nsch	
min ⁻¹	N m		N				НВ	HBZ	НВ	HBZ	
6,8	253	199,81	10100	2,7	iC 673 - HB2 63 B 4 B16B		36	38	39	40	142
7,4	233	184,07	10200	2,9	12 0.0 1.02 00 2 1 2.02	3	00	00	00	70	172
8,6	200	158,14	10300	3,4		3					
9,9	174	137,67	10300	3,9							
11	163	128,97	10400	4,1							
12	144	113,94	10400	4,7							
13	134	105,83	10400	5							
4,9	353	186,89	7480	1,4	iC 573 - HB2 71 A 6 B16B	-	29	32	32	35	140
5,3	325	172,17	7560	1,55		3					
6,2	279	147,92	7690	1,8							
7,1	243	128,77	7770	2,1							
7,5	228	120,63	7800	2,2							
7,3	236	186,89	7790	2,1	iC 573 - HB2 63 B 4 B16B		28	29	31	33	140
7,9	218	172,17	7820	2,3		3					
9,2	187	147,92	7880	2,7							
11	163	128,77	7910	3							
11	152	120,63	7930	3,2							
13	135	106,58	7950	3,6							
14	125	98,99	7960	3,9							
15	113	89,71	7970	4,3							
7,7	224	176,88	5780	1,5	iC 473 - HB2 63 B 4 B16B		21	23	22	24	138
8,3	206	162,94	5840	1,65		3					
9,7	177	139,99	5930	1,9							
11	154	121,87	5990	2,2							
12	144	114,17	6010	2,3							
13	127	100,86	6050	2,6							
15	118	93,68	6070	2,8							
16	107	84,9	6090	3,1							
18	96	76,23	6100	3,5							
7,4	234	123,66	3330	0,95	iC 373 - HB2 71 A 6 B12B		16	19	18	21	136
8,6	199	105,28	4300	1,15		3					
10	171	90,77	5070	1,3							
11	160	84,61	5390	1,35							
10	170	134,82	5130	1,3	iC 373 - HB2 63 B 4 B12B		15	17	17	19	136
11	156	123,66	5430	1,35		3					
13	133	105,28	5620	1,6							
15	115	90,77	5740	1,85							
16	107	84,61	5780	2							
18	93	73,96	5860	2,3							
20	88	69,33	5880	2,4							
22	77	61,18	5930	2,7							
24	70	55,76	5950	3							
28	61	48,08	5890	3,4							

 $^{^{(1)}}$ Endliche Übersetzung i

$P_1 = 0,1$	l8 kW							£ lk	g		p.
$n_{_2}$	M ₂	i	F _{r2}	fs			Füí	3en	Flar	nsch	ٺ
min ⁻¹	N m		N				НВ	HBZ	НВ	HBZ	
11	157	123,91	2880	0,9	iC 273 - HB2 63 B 4 B12B	-1.	14	15	14	16	134
13	133	105,49	3490	1,1		3					
15	115	90,96	3960	1,25							
16	107	84,78	4020	1,35							
18	94	74,11	4090	1,5							
20	88	69,47	4110	1,6							
22	77	61,3	4160	1,85							
24	71	55,87	4170	2							
28	61	48,17	4000	2,3							
30	57	44,9	3920	2,5							
35	50	39,25	3770	2,8							
37	47	36,79	3700	3							
42	41	32,47	3560	3,4							
47	36	28,78	3440	3,8							
56	31	24,47	3270	4,4							
48	36	28,37	3420	3,9	iC 272 - HB2 63 B 4 B12B	41-	14	15	14	16	134
52	33	26,09	3340	4,2		2					
61	28	22,32	3180	4,9							
70	24	19,35	3050	5,6							
75	23	18,08	2980	6							
87	20	15,63	2850	6,9							
102	17	13,28 (1)	2710	8							

$P_1 = 0.2$	25 kW										
4,6	518	195,24 (1)	12000	1,8	iC 773 - HB2 71 B 6 B20B		46	48	52	55	144
5,4	442	166,59	12400	2,1		3					
6,2	386	145,67	12600	2,4							
7,2	333	195,24 (1)	12700	2,8	iC 773 - HB2 71 A 4 B20B		44	47	51	54	144
8,4	284	166,59	12800	3,3		3					
9,6	248	145,67	12900	3,7							
10	236	138,39	13000	3,9							
12	207	121,42	13000	4,4							
4,5	530	199,81	8390	1,25	iC 673 - HB2 71 B 6 B16B		38	41	41	44	142
4,9	488	184,07	8750	1,35		3					
5,7	420	158,14	9250	1,6							
6,5	365	137,67	9580	1,85							
7,0	342	128,97	9700	1,95							
7,9	302	113,94	9900	2,2							
8,5	281	105,83	9990	2,4							
7,0	341	199,81	9690	1,95	iC 673 - HB2 71 A 4 B16B		37	40	40	43	142
7,6	314	184,07	9820	2,1		3					
8,9	270	158,14	10000	2,5							

⁽¹⁾ Endliche Übersetzung i

$P_1 = 0.2$	25 kW							5	3		p.
n ₂	M ₂	i	F _{r2}	fs			Füí	Sen	g Flar	nsch	ρ.
min ⁻¹	N m		N							HBZ	
		407.07		2.0	:0 072 UD0 74 A 4 D40D						
10 11	235 220	137,67 128,97	10100 10200	2,9 3	iC 673 - HB2 71 A 4 B16B	3	37	40	40	43	142
12	194	113,94	10200	3,4		3 1					
13	180	105,83	10300	3,7							
15	164	95,91	10300	4,1							
16	147	86,11	10400	4,1							
4,8	496	186,89	6390	1	iC 573 – HB2 71 B 6 B16B		30	32	33	36	140
5,2	457	172,17	7110	1,1	10 070 - 1102 77 0 0 0100	3	30	32	33	30	140
6,1	392	147,92	7360	1,25		3-1					
7,0	342	128,77	7520	1,45							
7,5	320	120,63	7590	1,55							
8,4	283	106,58	7690	1,75							
9,1	263	98,99	7730	1,9							
7,5	319	186,89	7580	1,55	iC 573 - HB2 71 A 4 B16B		29	31	32	35	140
8,1	294	172,17	7650	1,7	12 010 1102 11 11 2102	3	25	"	52	00	140
9,5	252	147,92	7750	2		3-					
11	220	128,77	7820	2,3							
12	206	120,63	7840	2,4							
13	182	106,58	7880	2,7							
14	169	98,99	7900	2,9							
16	153	89,71	7920	3,2							
17	137	80,55	7940	3,5							
20	118	69,23	7960	4,1							
7,9	302	176,88	4980	1,1	iC 473 - HB2 71 A 4 B16B		22	25	23	26	138
8,6	278	162,94	5540	1,2		3					
10	239	139,99	5710	1,4							
11	208	121,87	5830	1,6							
12	195	114,17	5870	1,7							
14	172	100,86	5940	1,95							
15	160	93,68	5970	2,1							
16	145	84,9	6010	2,3							
18	130	76,23	6040	2,6							
20	117	68,54	6070	2,9							
22	110	64,21	6080	3,1							
25	97	56,73	6100	3,5							
27	90	52,69	6110	3,7							
29	81	47,75	5940	4,1							
10	230	134,82	3420	0,95	iC 373 - HB2 71 A 4 B12B		16	19	18	21	136
11	211	123,66	3950	1		3					
13	180	105,28	4840	1,2							
15	155	90,77	5430	1,35							
17	144	84,61	5520	1,45							
19	126	73,96	5660	1,65							
20	118	69,33	5710	1,8							

$P_1 = 0,2$	25 kW							S lk	g		p.
n ₂	M ₂	i	F _{r2}	fs			Füí	3en	Flar	sch	ب
min ⁻¹	N m		N				НВ	HBZ	НВ	HBZ	
23	104	61,18	5800	2	iC 373 - HB2 71 A 4 B12B		16	19	18	21	136
25	95	55,76	5840	2,2		3					
29	82	48,08	5740	2,5		3					
31	76	44,81	5630	2,7							
36	67	39,17	5410	3,1							
38	63	36,72	5310	3,3							
43	55	32,4	5110	3,7							
17	145	84,78	3160	1	iC 273 - HB2 71 A 4 B12B		15	17	15	18	134
19	126	74,11	3640	1,15		3					
20	118	69,47	3850	1,2		3					
23	105	61,3	4030	1,35							
25	95	55,87	4010	1,5							
29	82	48,17	3860	1,7							
31	77	44,9	3790	1,85							
36	67	39,25	3650	2,1							
38	63	36,79	3590	2,2							
43	55	32,47	3460	2,5							
49	49	28,78	3350	2,8							
57	42	24,47	3200	3,3							
49	48	28,37	3340	2,9	iC 272 - HB2 71 A 4 B12B	4	15	17	15	18	134
54	44	26,09	3260	3,1		2					
63	38	22,32	3110	3,6							
72	33	19,35	2980	4,1							
77	31	18,08	2920	4,4							
90	27	15,63	2800	5,1							
105	23	13,28 (1)	2660	6							
118	20	11,86	2570	6,6							
138	17	10,13	2450	7,7							
149	16	9,41	2380	7,6							
172	14	8,16	2280	8,9							
184	13	7,63 (1)		9,2							
212	11	6,59	2130	9,8							
250	10	5,6 (1)	2020	11							
280	9	5 (1)	1950	11							
328	7	4,27	1860	12							
350	6,8	4 (1)	1820	13							
415	6	3,37	1720	14							

 $^{^{(1)}}$ Endliche Übersetzung i

$P_1 = 0.3$	R7 kW							F	7		
			_	_				_	g		p.
n ₂	M ₂	i	F_{r2}	fs		~	Füí			nsch	
min ⁻¹	N m		N				НВ	HBZ	НВ	HBZ	
3,2	1101	289,74	28100	3	iC 973 - HB2 80 A 6 B30C		134	138	150	154	148
3,6	972	255,71	28300	3,4		3					
3,9	917	241,25	28300	3,7							
4,3	822	216,28	28400	4,1							
3,8	937	246,54	20000	1,85	iC 873 - HB2 80 A 6 B25C		81	85	89	93	146
4,3	823	216,54	20000	2,1		3					
4,5	782	205,71	20000	2,2							
5,1	691	181,77	20000	2,5							
6,0	590	155,34	20000	3							
6,5	541	142,41	20000	3,2							
5,6	633	166,59	11400	1,45	iC 773 - HB2 80 A 6 B20C		47	51	53	57	144
6,4	553	145,67	11800	1,65		3					
6,7	526	138,39	12000	1,75							
7,2	493	195,24 ⁽¹⁾	12100	1,9	iC 773 - HB2 71 B 4 B20B		45	48	52	55	144
8,4	420	166,59	12400	2,2		3					
9,6	368	145,67	12600	2,5							
10	349	138,39	12700	2,6							
12	306	121,42	12800	3							
14	260	102,99	12900	3,5							
15	235	92,97	13000	3,9							
5,9	601	158,14	7590	1,1	iC 673 - HB2 80 A 6 B16C		40	44	42	46	142
6,8	523	137,67	8400	1,3		3					
7,2	490	128,97	8690	1,35							
8,2	433	113,94	9130	1,55							
7,0	504	199,81	8590	1,35	iC 673 - HB2 71 B 4 B16B		38	41	41	44	142
7,6	465	184,07	8910	1,45		3					
8,9	399	158,14	9370	1,7							
10	347	137,67	9670	1,95							
11	326	128,97	9780	2,1							
12	288	113,94	9950	2,3							
13	267	105,83	10000	2,5							
15	242	95,91	10100	2,8							
16	217	86,11	10200	3,1							
19	187	74,17	10300	3,6							
20	176	69,75	10300	3,8							
23	155	61,26	10400	4,3							
25	144	56,89	10400	4,7							
7,2 	489	128,77	6410	1	iC 573 - HB2 80 A 6 B16C		31	35	34	38	140
7,7	458	120,63	7000	1,1		3					
8,7	405	106,58	7300	1,25							
9,4	376	98,99	7400	1,35		_					
7,5	472	186,89	6790	1,05	iC 573 - HB2 71 B 4 B16B		30	32	33	35	140
8,1	435	172,17	7190	1,15		3					
9,5	373	147,92	7420	1,35							

 $^{^{} ext{(1)}}$ Endliche Übersetzung i

$P_{_{1}} = 0.3$	87 kW							5	3		p.
n ₂	M ₂	i	F _{r2}	fs			Fül	ßen	g Flar	nsch	٦.
min ⁻¹	N m		N				НВ	HBZ	НВ	HBZ	
11	325	128,77	7570	1,55	iC 573 - HB2 71 B 4 B16B		30	32	33	35	140
12	304	120,63	7630	1,6		3					
13	269	106,58	7720	1,8							
14	250	98,99	7760	1,95							
16	226	89,71	7810	2,2							
17	203	80,55	7850	2,4							
20	175	69,23	7900	2,8							
22	164	64,85	7910	2,9							
24	145	57,29	7700	3,3							
26	134	53,22	7540	3,6							
29	122	48,23	7320	3,9							
10	353	139,99	3770	0,95	iC 473 - HB2 71 B 4 B16B		23	26	24	27	138
11	308	121,87	4880	1,1		3					
12	288	114,17	5360	1,15							
14	255	100,86	5650	1,3							
15	236	93,68	5730	1,4							
16	214	84,9	5810	1,55							
18	192	76,23	5880	1,75							
20	173	68,54	5940	1,95							
22	162	64,21	5970	2,1							
25	143	56,73	6020	2,3							
27	133	52,69	5940	2,5							
29	121	47,75	5780	2,8							
33	108	42,87	5610	3,1							
38	93	36,93	5370	3,6							
40	88	34,73	5280	3,8							
41	85	33,79	5230	3,2	iC 472 – HB2 71 B 4 B16B	2	23	26	24	27	138
45	79	31,12	5110	3,1		2					
52	67	26,74	4880	5							
60	59	23,28	4680	5,7							
64 15	55 229	21,81 90,77	4590	6,1 0,95	iC 373 – HB2 71 B 4 B12B	_ =	47	40	40	0.4	400
17	214	84,61	3480 3920	1	IC 373 - HB2 71 B 4 B12B	3	17	19	19	21	136
19	187	73,96	4670	1,15		3 -1					
20	175	69,33	5000	1,13							
23	154	61,18	5450	1,35							
25	141	55,76	5560	1,55							
29	121	48,08	5550	1,7							
31	113	44,81	5440	1,85							
36	99	39,17	5250	2,1							
38	93	36,72	5160	2,2							
43	82	32,4	4980	2,5							
49	73	28,73	4810	2,8							
57	62	24,42	4590	3,3							
57	62	24,42	4590	3,3							

									_		
$P_{_{1}}=0,$	37 kW							- k	g		p.
n ₂	M ₂	i	F_{r2}	fs			Füí	Füßen Flai		nsch	
min ⁻¹	N m		N				НВ	HBZ	НВ	HBZ	
49	71	28,32	4790	2,9	iC 372 - HB2 71 B 4 B12B	4-	17	19	19	21	136
54	66	26,03	4680	3,1		2					
63	56	22,27	4470	3,6							
73	49	19,31	4280	4,2							
78	46	18,05	4200	4,4							
90	39	15,6	4020	5,1							
106	33	13,25	3820	5,9							
118	30	11,83	3690	6,3							
23	155	61,3	2930	0,9	iC 273 - HB2 71 B 4 B12B		16	18	16	19	134
25	141	55,87	3280	1		3					
29	122	48,17	3660	1,15							
31	113	44,9	3600	1,25							
36	99	39,25	3490	1,4							
38	93	36,79	3430	1,5							
43	82	32,47	3330	1,7							
49	73	28,78	3230	1,9							
57	62	24,47	3090	2,2							
49	72	28,37	3220	1,95	iC 272 - HB2 71 B 4 B12B		16	18	16	19	134
54	66	26,09	3140	2,1		2					
63	56	22,32	3020	2,4							
72	49	19,35	2900	2,8							
77	46	18,08	2840	3							
90	39	15,63	2730	3,4							
105	34	13,28 (1)	2600	4							

$P_1 = 0,5$	55 kW										
3,2	1654	289,74	27500	2	iC 973 - HB2 80 B 6 B30C		136	140	152	156	148
3,6	1460	255,71	27800	2,3		3					
3,8	1377	241,25	27900	2,4							
4,3	1235	216,28	28000	2,7							
4,8	1083	289,74	28200	3,1	iC 973 - HB2 80 A 4 B30C		134	138	150	154	148
5,5	956	255,71	28300	3,5		3					
5,8	902	241,25	28300	3,7							
6,5	809	216,28	28400	4,1							
3,7	1408	246,54	15600	1,25	iC 873 - HB2 80 B 6 B25C	-	83	87	91	95	146
4,2	1236	216,54	17900	1,4		3					
4,5	1174	205,71	18800	1,5							
5,1	1038	181,77	19900	1,7							
5,9	887	155,34	20000	1,95							
5,7	922	246,54	20000	1,9	iC 873 - HB2 80 A 4 B25C		81	85	89	93	146
6,5	810	216,54	20000	2,2		3					
6,8	769	205,71	20000	2,3							
7,7	680	181,77	20000	2,6							

 $^{^{} ext{(1)}}$ Endliche Übersetzung i

$P_1 = 0.5$	55 kW							£	3		
	M ₂	i	F _{r2}	fs			Ent	k ßen	g	nsch	p.
n ₂ min⁻¹	N m	,	r _{r2}	13						HBZ	
9,0	581	155,34	20000	3	iC 873 - HB2 80 A 4 B25C		0.4	0.5	00	00	4.40
9,9	532	142,41	20000	3,3	10 073 - HB2 00 A 4 B230	3	81	85	89	93	146
11	467	124,97	20000	3,7		3-					
12	443	118,43 (1)	20000	4							
14	387	103,65	20000	4,5							
8,4	623	166,59	11500	1,5	iC 773 - HB2 80 A 4 B20C		46	50	53	57	144
9,6	545	145,67	11900	1,7	10 110 1122 00 11 1 2200	3	40	30	33	31	144
10	517	138,39	12000	1,8		3					
12	454	121,42	12300	2							
14	385	102,99	12600	2,4							
15	348	92,97	12700	2,6							
17	306	81,8	12800	3							
18	289	77,24	12800	3,1							
21	246	65,77	12900	3,7							
8,9	591	158,14	7800	1,15	iC 673 - HB2 80 A 4 B16C		39	43	42	46	142
10	515	137,67	8550	1,3		3					
11	482	128,97	8820	1,4		3-					
12	426	113,94	9220	1,55							
13	396	105,83	9420	1,7							
15	359	95,91	9630	1,85							
16	322	86,11	9810	2,1							
19	277	74,17	10000	2,4							
20	261	69,75	10100	2,6							
23	229	61,26	10200	2,9							
25	213	56,89	10200	3,2							
12	451	120,63	7140	1,1	iC 573 - HB2 80 A 4 B16C		31	34	34	38	140
13	398	106,58	7340	1,25		3					
14	370	98,99	7440	1,3							
16	335	89,71	7550	1,45							
17	301	80,55	7640	1,6							
20	259	69,23	7740	1,85							
22	242	64,85	7670	2							
25	214	57,29	7420	2,2							
26	199	53,22	7280	2,4							
29	180	48,23	7090	2,6							
32	162	43,3	6880	2,9							
38	139	37,3 (1)	6600	3,4							
40	131	35,07	6480	3,6							
53	98	26,31	5960	4,8	iC 572 - HB2 80 A 4 B16C	2	30	33	33	37	140
56	93	24,99 (1)	5870	5		2					
64	82	21,93	5650	5,7							
76	70	18,6 (1)	5380	6,7							
15	350	93,68	3940	0,95	iC 473 - HB2 80 A 4 B16C		24	28	25	29	138
17	317	84,9	4730	1,05		3					

⁽¹⁾ Endliche Übersetzung i

									_		
$P_1 = 0,5$	55 kW							p.			
n ₂	M ₂	i	F _{r2}	fs			Fü	ßen	g Flar	nsch	
min ⁻¹	N m		N				НВ	HBZ	НВ	HBZ	
18	285	76,23	5510	1,2	iC 473 - HB2 80 A 4 B16C		24	28	25	29	138
20	256	68,54	5660	1,3	12 110 1100 10 11 1 2 10 1	3	24	20	20	23	100
22	240	64,21	5720	1,4		3-					
25	212	56,73	5800	1,6							
27	197	52,69	5690	1,7							
29	179	47,75	5550	1,9							
33	160	42,87	5400	2,1							
38	138	36,93	5190	2,4							
40	130	34,73	5100	2,6							
47	112	29,88	4890	3							
53	100	26,74	4740	3,4	iC 472 - HB2 80 A 4 B16C		24	28	25	29	138
60	87	23,28	4560	3,8		2					
64	82	21,81	4470	4,1							
23	229	61,18	3560	0,9	iC 373 - HB2 80 A 4 B12C		18	22	20	24	136
25	208	55,76	4120	1		3					
29	180	48,08	4920	1,15							
31	168	44,81	5170	1,25							
36	146	39,17	5010	1,4							
38	137	36,72	4930	1,5							
43	121	32,4	4780	1,7							
49	107	28,73	4630	1,9							
58	91	24,42	4430	2,2							
63	83	22,27	4320	2,5	iC 372 - HB2 80 A 4 B12C	2	18	22	20	24	136
73	72	19,31	4160	2,8		2					
78	67	18,05	4080	3							
90	58	15,6	3910	3,5							
106	50	13,25 11,83	3730	4							
119 36	44 147	39,25	3610 3180	4,3 0,95	iC 273 - HB2 80 A 4 B12C		47	00	47	04	404
38	138	36,79	3210	1	IC 273 - HB2 80 A 4 B12C	3	17	20	17	21	134
43	121	32,47	3130	1,15		3					
49	108	28,78	3050	1,3							
57	91	24,47	2940	1,5							
63	83	22,32	2870	1,65	iC 272 - HB2 80 A 4 B12C		17	20	17	21	134
73	72	19,35	2770	1,9		2					
78	68	18,08	2730	2		2"1					
90	58	15,63	2630	2,3							
106	50	13,28 (1)		2,7							
118	44	11,86	2440	3							
139	38	10,13	2330	3,5							
149	35	9,41	2260	3,5							
172	30	8,16	2170	4							

 $^{^{(1)}}$ Endliche Übersetzung i

P ₁ = 0,55 kW											p.
n ₂	M ₂	i	F _{r2}	fs				ßen	g Flan	isch	ب
min ⁻¹	N m		N				НВ	HBZ	НВ	HBZ	
184	29	7,63	2130	4,2	iC 272 - HB2 80 A 4 B12C		17	20	17	21	134
213	25	6,59	2040	4,5		2					
251	21	5,6	1950	4,9							
281	19	5	1880	5,2							
329	16	4,27	1800	5,6							
351	15	4	1760	5,8							
417	13	3,37	1670	6,4							

$P_1 = 0.7$	75 kW										
3,6	1969	255,71	25900	1,7	iC 973 - HB3 90 S 6 B30D						
3,9	1858	241,25	27100	1,8		3	142	146	158	162	148
4,3	1666	216,28	27500	2							
4,9	1472	289,74	27700	2,3	iC 973 - HB3 80 B 4 B30C		138	142	154	158	148
5,5	1299	255,71	27900	2,6		3					
5,8	1226	241,25	28000	2,7							
6,5	1099	216,28	28200	3							
7,6	946	186,3	28300	3,5							
8,3	864	170,02	28400	3,9							
4,3	1668	216,54	11500	1,05	iC 873 - HB3 90 S 6 B25D		89	93	97	101	146
4,5	1584	205,71	12700	1,1		3					
5,1	1400	181,77	15300	1,25							
6,0	1196	155,34	18100	1,45							
6,5	1097	142,41	19500	1,6							
5,7	1252	246,54	18800	1,4	iC 873 - HB3 80 B 4 B25C		85	89	93	97	146
6,5	1100	216,54	19500	1,6		3					
6,9	1045	205,71	19700	1,65		_					
7,8	923	181,77	20000	1,9							
9,1	789	155,34	20000	2,2							
9,9	723	142,41	20000	2,4							
11	635	124,97	20000	2,8							
12	602	118,43 (1)	20000	2,9							
14	527	103,65	20000	3,3							
15	474	93,38	20000	3,7							
8,5	846	166,59	9840	1,1	iC 773 - HB3 80 B 4 B20C		51	55	57	61	144
9,7	740	145,67	10700	1,25		3					
10	703	138,39	11000	1,3							
12	617	121,42	11500	1,5							
14	523	102,99	12000	1,75							
15	472	92,97	12200	1,9							
17	416	81,8	12500	2,2							
18	392	77,24	12500	2,3							
21	334	65,77	12700	2,7							

 $^{^{(1)}}$ Endliche Übersetzung i

$P_1 = 0.7$	75 kW							5	3		
n ₂	M ₂	i	F _{r2}	fs			For	ßen	g Flar	nsch	p.
		,		,0						HBZ	
min ⁻¹	N m		N								
24	293	57,68	12800	3,1	iC 773 - HB3 80 B 4 B20C		51	55	57	61	144
27	265	52,07	12900	3,4		3					
31	233	45,81	13000	3,8							
33	220	43,26	13000	4	10.070 UD0.00 D.4 D400	_					
11	655 570	128,97	7030	1	iC 673 - HB3 80 B 4 B16C	3	44	48	46	50	142
12 13	579 538	113,94 105,83	7940	1,15 1,25		3					
15	487	95,91	8340 8780	1,4							
16	437	86,11	9150	1,4							
19	377	74,17	9530	1,33							
20	354	69,75	9650	1,0							
23	311	61,26	9860	2,2							
25	289	56,89	9960	2,3							
27	262	51,56	10100	2,5							
30	235	46,29	10200	2,7							
13	541	106,58	5570	0,9	iC 573 - HB3 80 B 4 B16C		35	39	38	42	140
14	503	98,99	6910	0,95	10 010 1120 00 2 1 2100	3	33	33	30	42	140
16	456	89,71	7120	1,05		3 📲					
18	409	80,55	7300	1,2							
20	352	69,23	7460	1,35							
22	329	64,85	7360	1,45							
25	291	57,29	7150	1,65							
26	270	53,22	7020	1,75							
29	245	48,23	6850	1,95							
33	220	43,3	6670	2,2							
38	189	37,3 (1)	6410	2,5							
40	178	35,07	6310	2,7							
47	153	30,18	6060	3,1							
52	137	26,97	5870	3,4							
54	134	26,31	5830	3,5	iC 572 - HB3 80 B 4 B16C	41-	34	38	37	41	140
56	127	24,99 (1)	5750	3,7		2					
64	111	21,93	5540	4,2							
76	94	18,6 (1)	5280	4,9							
21	348	68,54	4530	0,95	iC 473 - HB3 80 B 4 B16C		29	33	30	34	138
22	326	64,21	5310	1,05		3					
25	288	56,73	5510	1,15							
27	268	52,69	5430	1,25							
30	243	47,75	5320	1,4							
33	218	42,87	5180	1,55							
38	188	36,93	5000	1,8							
41	176	34,73	4930	1,9							
47	152	29,88	4740	2,2							
53	136	26,7	4610	2,5							
60	120	23,59	4460	2,8							

 $^{^{(1)}}$ Endliche Übersetzung i

$P_1 = 0.7$	′5 kW							Ş	g		p.
n ₂	M ₂	i	F _{r2}	fs			Fül	ßen	Flar	isch	ٺ
min ⁻¹	N m		N				НВ	HBZ	НВ	HBZ	
53	136	26,74	4610	2,5	iC 472 - HB3 80 B 4 B16C	4	29	33	30	34	138
61	118	23,28	4440	2,8		2					
65	111	21,81	4360	3							
73	98	19,27	4220	3,3							
79	91	17,89	4130	3,5							
87	82	16,22	4020	3,7							
29	244	48,08	3630	0,85	iC 373 - HB3 80 B 4 B12C		22	26	24	28	136
31	228	44,81	4490	0,9		3					
36	199	39,17	4760	1,05							
38	187	36,72	4690	1,1							
44	165	32,4	4570	1,25							
49	146	28,73	4440	1,4							
58	124	24,42	4280	1,65							
63	113	22,27	4180	1,8	iC 372 - HB3 80 B 4 B12C	4	22	26	24	28	136
73	98	19,31	4030	2,1		2					
78	92	18,05	3960	2,2							
90	79	15,6	3810	2,6							
106	67	13,25	3640	2,9							
119	60	11,83	3530	3,1							
139	51	10,11	3380	3,4							
149	48	9,47	3310	3,6							
49	146	28,78	2860	0,95	iC 273 - HB3 80 B 4 B12C		21	25	21	25	134
58	124	24,47	2770	1,1		3					
63	113	22,32	2720	1,2	iC 272 - HB3 80 B 4 B12C	4	21	25	21	25	134
73	98	19,35	2640	1,4		2					
78	92	18,08	2610	1,5							
90	79	15,63	2520	1,7							
106	67	13,28 (1)	2430	2							
119	60	11,86	2360	2,2							
139	51	10,13	2260	2,6							
150	48	9,41	2180	2,6							
173	41	8,16	2110	3							
185	39	7,63 (1)	2070	3,1							
214	33	6,59	1990	3,3							
252	28	5,6 ⁽¹⁾	1900	3,6							
282	25	5 (1)	1840	3,8							

⁽¹⁾ Endliche Übersetzung i

P ₁ = 1,1	l kW							2	3		
n ₂	M ₂	i	F ₁₂	fs			For	Sen	g Flar	ech	p.
min ⁻¹	N m	•	, _{r2} N	13						HBZ	
4,3	2443	216,28	20500	1,35	iC 973 - HB3 90 L 6 B30D		146	152	162	168	148
5,0	2104	186,3	24300	1,6	10 070 1100 00 1 0 0000	3	140	132	102	100	140
5,6	1892	255,71	27000	1,75	iC 973 - HB3 90 S 4 B30D	3-	445	4.40	404	405	440
5,6 5,9	1785	241,25	27300	1,75	IC 973 - HB3 90 3 4 B30D	3	145	149	161	165	148
6,6	1600	216,28	27600	2,1		3 1					
7,6	1378	186,3		2,1							
7,6 8,4	1258	170,02	27900 28000	2,4							
9,4	1115	150,78	28100	3							
3,4 11	938	126,75	28300	3,5							
12	862	116,48	28400	3,8							
6,6	1602	216,54	16800	1,1	iC 873 - HB3 90 S 4 B25D	_ =	92	96	400	104	146
6,9	1522	205,71	17400	1,15	10 073 - 1103 30 3 4 0230	3	92	90	100	104	140
7,8	1345	181,77	18400	1,3		3 -1					
9,1	1149	155,34	19300	1,5							
10,0	1054	142,41	19700	1,65							
11	924	124,97	20000	1,9							
12	876	118,43 (1)	20000	2							
14	767	103,65	20000	2,3							
15	691	93,38	20000	2,5							
17	606	81,92	20000	2,9							
20	537	72,57	20000	3,2							
22	471	63,68 (1)	20000	3,7							
24	446	60,35 (1)	20000	3,9							
27	391	52,82	20000	4,4							
12	898	121,42	9360	1	iC 773 - HB3 90 S 4 B20D		57	61	64	68	144
14	762	102,99	10600	1,2		3					
15	688	92,97	11100	1,3		3					
17	605	81,8	11600	1,5							
18	571	77,24	11800	1,6							
22	487	65,77	12200	1,85							
25	427	57,68	12400	2,1							
27	385	52,07	12600	2,3							
31	339	45,81	12700	2,6							
33	320	43,26	12800	2,8							
39	272	36,83	12900	3,2							
42	248	33,47	12900	3,4							
16	637	86,11	7290	1,05	iC 673 - HB3 90 S 4 B16D		50	54	53	57	142
19	549	74,17	8260	1,2		3					
20	516	69,75	8550	1,3							
23	453	61,26	9050	1,5							
25	421	56,89	9270	1,6							
28	381	51,56	9510	1,75							
31	342	46,29	9720	1,9							
36	295	39,88 (1)	9940	2,1							

 $^{^{(1)}}$ Endliche Übersetzung i

$P_1 = 1,1$	kW							F	ર		
			_	_					g		p.
n ₂	M ₂	i	F _{r2}	fs		~		ßen	Flar		
min ⁻¹	N m		N				НВ	HBZ	НВ	HBZ	
38	277	37,5	10000	2,2	iC 673 - HB3 90 S 4 B16D		50	54	53	57	142
44	239	32,27	10200	2,4		3					
49	213	28,83	10200	2,6							
50	208	28,13	10100	2,8	iC 672 - HB3 90 S 4 B16D	4	49	53	52	56	142
53	198	26,72	10000	2,8		2					
61	173	23,44	9620	3,6							
71	147	19,89	9160	4,5							
21	512	69,23	6720	0,95	iC 573 - HB3 90 S 4 B16D		42	46	45	49	140
22	480	64,85	6800	1		3					
25	424	57,29	6660	1,15							
27	394	53,22	6560	1,2							
29	357	48,23	6440	1,35							
33	320	43,3	6290	1,5							
38	276	37,3 (1)		1,7							
40	259	35,07	6000	1,8							
47 52	223	30,18	5790	2,1							
53 54	199 195	26,97 26,31	5630 5600	2,4	iC 572 - HB3 90 S 4 B16D		4.4	4.5	4.4	40	4.40
5 7	185	24,99 (1)		2,4 2,5	IC 372 - HB3 90 3 4 B16D	2	41	45	44	48	140
65	162	21,93	5340	2,9		2					
76	138	18,6 (1)		3,4							
85	124	16,79	4970	3,7							
30	353	47,75	4310	0,95	iC 473 - HB3 90 S 4 B16D		35	39	36	40	138
33	317	42,87	4810	1,05	10 110 1120 00 0 1 2102	3	33	33	30	40	130
38	273	36,93	4680	1,25		3-					
41	257	34,73	4620	1,3							
48	221	29,88	4480	1,5							
53	198	26,7	4370	1,7							
60	175	23,59	4250	1,9							
61	172	23,28	4240	1,95	iC 472 - HB3 90 S 4 B16D	4-	35	39	36	40	138
65	161	21,81	4170	2,1		2					
74	143	19,27	4040	2,3							
79	132	17,89	3970	2,4							
88	120	16,22	3870	2,5							
98	108	14,56	3760	2,7							
113	93	12,54	3620	3							
120	87	11,79	3550	3,1							
140	75	10,15	3410	3,4							
157	67	9,07	3300	3,6							
44	240	32,4	3040	0,85	iC 373 - HB3 90 S 4 B12D		29	33	31	35	136
49	213	28,73	3410	0,95		3					
58	181	24,42	3800	1,15							

⁽¹⁾ Endliche Übersetzung i

P ₁ = 1,1	l kW							٤	g		p.
n ₂	M ₂	i	F _{r2}	fs			Füí	ßen	Flar	nsch	ت
min ⁻¹	N m		N				НВ	HBZ	НВ	HBZ	
74	143	19,31	3810	1,45	iC 372 - HB3 90 S 4 B12D		28	32	30	34	136
79	134	18,05	3750	1,55		2	_				
91	115	15,6	3630	1,8							
107	98	13,25	3490	2							
120	88	11,83	3390	2,2							
140	75	10,11	3260	2,4							
150	70	9,47	3200	2,5							
178	59	7,97	3060	2,7							
213	49	6,67	2890	3							
251	42	5,67	2760	3,5							
281	37	5,06	2670	3,7							
73	143	19,35	2420	0,95	iC 272 - HB3 90 S 4 B12D		27	31	28	32	134
79	134	18,08	2400	1		2					
91	116	15,63	2340	1,15							
107	98	13,28 ⁽¹⁾	2270	1,35							
120	88	11,86	2220	1,55							
140	75	10,13	2140	1,8							
174	60	8,16	1990	2							
186	56	7,63 (1)	1960	2,1							
215	49	6,59	1900	2,3							
254	41	5,6 ⁽¹⁾	1820	2,5							
284	37	5 ⁽¹⁾	1770	2,6							
332	32	4,27	1700	2,8							
355	30	4 (1)	1670	2,9							
421	25	3,37	1600	3,2							
216	49	13,28 (1)	1950	2,7	iC 272 - HB3 80 B 2 B12C		21	24	21	25	134
242	43	11,86	1890	3		2					
284	37	10,13	1820	3,3							
305	34	9,41	1750	3,5							
352	30	8,16	1690	3,9							
377	28	7,63 (1)		4							
436	24	6,59	1590	4,4							
513	20	5,6 ⁽¹⁾		4,8							
575	18	5 (1)		5,2							
673	16	4,27	1410	5,6							
719	15	4 (1)		5,8							
853	12	3,37	1320	6,4							

 $^{^{(1)}}$ Endliche Übersetzung i

$P_1 = 1,5$	5 kW							5	<u> २</u>		p.
n ₂	M ₂	i	F _{r2}	fs			Föf	Sen	g Flar	nsch	Ρ.
min ⁻¹	N m	-	N							HBZ	
5,6	2562	255,71	24000	1,3	iC 973 - HB3 90 L 4 B30D		1/15	151	161	167	148
5,9	2417	241,25	24800	1,4	10 010 1120 00 2 1 2002	3	143	131	101	107	140
6,6	2167	216,28	25900	1,55		J					
7,7	1866	186,3	27000	1,8							
8,4	1703	170,02	27400	1,95							
9,5	1510	150,78	27700	2,2							
11	1270	126,75	28000	2,6							
12	1167	116,48	28100	2,8							
14	1036	103,44	28200	3,1							
15	926	92,48	28300	3,5							
7,9	1821	181,77	15100	0,95	iC 873 - HB3 90 L 4 B25D		92	98	100	106	146
9,2	1556	155,34	17100	1,1		3					
10	1427	142,41	17900	1,25							
11	1252	124,97	18800	1,4							
12	1186	118,43 (1)	19200	1,5							
14	1038	103,65	19800	1,7							
15	935	93,38	20000	1,85							
17	821	81,92	20000	2,1							
20	727	72,57	20000	2,4							
22	638	63,68 (1)	20000	2,7							
24	605	60,35 (1)	20000	2,9							
27	529	52,82	20000	3,2							
30	477	47,58	20000	3,6							
34	418	41,74	20000	4,1							
39	369	36,84 (1)	19400	4,6	10 770 UD0 00 L 4 D00D		_				
15 47	931	92,97	8980	1	iC 773 - HB3 90 L 4 B20D		58	64	64	70	144
17	819	81,8	10100	1,1		3					
19 22	774 659	77,24 65,77	10500 11300	1,15 1,35							
25	578	57,68	11700	1,55							
27	522	52,07	12000	1,7							
31	459	45,81	12300	1,95							
33	433	43,26	12400	2							
39	369	36,83	12600	2,4							
43	335	33,47	12700	2,5							
49	290	29	12400	2,9							
57	253	25,23	11900	3,1							
61	234	23,37	11600	3,6	iC 772 - HB3 90 L 4 B20D	4	56	62	63	69	144
67	215	21,43	11400	3,9		2					
76	188	18,8	10900	4,2							
23	614	61,26	7550	1,1	iC 673 - HB3 90 L 4 B16D		51	57	53	59	142
25	570	56,89	8030	1,2		3					
28	517	51,56	8530	1,3		-					
31	464	46,29	8960	1,4							

⁽¹⁾ Endliche Übersetzung i

$P_1 = 1,8$	kW							k	ا		p.
n ₂	M ₂	i	F _{r2}	fs			Füí		ع Flar	nsch	ک
min ⁻¹	N m		N						НВ	HBZ	
36	399	39,88 (1)		1,55	iC 673 - HB3 90 L 4 B16D		51	57	53	59	142
38	376	37,5	9530	1,6		3		01			
44	323	32,27	9810	1,75							
50	289	28,83	9960	1,9							
51	282	28,13	9890	2,1	iC 672 - HB3 90 L 4 B16D	4	50	56	53	59	142
54	268	26,72	9760	2,1		2					
61	235	23,44	9410	2,7							
72	199	19,89	8980	3,3							
80	180	17,95	8720	3,5							
27	533	53,22	5900	0,9	iC 573 - HB3 90 L 4 B16D	-	42	48	45	51	140
30	483	48,23	5980	1		3					
33	434	43,3	5880	1,1							
38	374	37,3 (1)	5730	1,25							
41	351	35,07	5670	1,35							
47	302	30,18	5500	1,55							
53	270	26,97	5380	1,75							
54	264	26,31	5350	1,8	iC 572 - HB3 90 L 4 B16D	2	41	47	44	50	140
57	250	24,99 (1)	5290	1,85		2					
65	220	21,93	5130	2,1							
77	186	18,6 (1)		2,5							
85	168	16,79	4810	2,7							
97 402	148	14,77 (1)		3,1							
103 120	140 119	13,95 ⁽¹⁾ 11,88	4580 4390	3,3 3,8							
39	370	36,93	3260	0,9	iC 473 - HB3 90 L 4 B16D		20	40	27	40	120
39 41	348	36,93	4290	0,95	10 475 - ND3 30 L 4 D10D		36	42	37	43	138
48	299	29,88	4190	1,1		3					
54	267	26,7	4110	1,25							
61	236	23,59	4020	1,4							
61	233	23,28	4010	1,45	iC 472 - HB3 90 L 4 B16D		36	42	37	43	138
66	218	21,81	3960	1,55		2			٠.	.	. 50
74	193	19,27	3860	1,7		_ "					
80	179	17,89	3800	1,75							
88	162	16,22	3710	1,85							
98	146	14,56	3620	2							
114	126	12,54	3490	2,2							
121	118	11,79	3440	2,3							
141	102	10,15	3310	2,5							
158	91	9,07	3210	2,6							
178	80	8,01	3110	2,8			35	41	36	42	
184	78	7,76 (1)	3040	2,4							
205	70	6,96	2950	2,6							
238	60	6	2830	2,9							
254	56	5,64 (1)	2780	3,1							

 $^{^{} ext{(1)}}$ Endliche Übersetzung i

$P_1 = 1.5$	kW							£	3		
			E	fs			For		g		p.
n ₂	M ₂	i	F_{r2}	15				ßen HBZ	Flar		
min ⁻¹	N m		N		•		ПВ	IIDZ	ПВ	TIDZ	
295	49	4,85	2670	3,5	iC 472 - HB3 90 L 4 B16D	-	35	41	36	42	138
330	43	4,34	2590	3,8		2					
373	38	3,83	2500	4,2		_					
74	193	19,31	2760	1,05	iC 372 - HB3 90 L 4 B12D	2	29	35	31	37	136
79	181	18,05	2930	1,15		2					
92	156	15,6	3230	1,3							
108	133	13,25	3320	1,5							
121	119	11,83	3240	1,6							
141	101	10,11	3130	1,75							
151	95	9,47	3080	1,8							
179	80	7,97	2950	2							
214	67 57	6,67	2800	2,2							
252	57	5,67	2680	2,6							
283	51	5,06	2600	2,7							
331	43	4,32	2490	3							
353 419	41	4,05 3,41	2450 2330	3,1							
218	34 66	13,25	2830	3,4 2,9	iC 372 - HB3 90 S 2 B12D		200	20	20	20	400
244	59	11,83	2740	3,1	10 372 - HB3 90 3 2 B12D	2	26	30	28	32	136
286	50	10,11	2630	3,4		2					
305	47	9,47	2580	3,6							
362	40	7,97	2460	3,9							
91	157	15,63	1780	0,85	iC 272 - HB3 90 L 4 B12D		28	34	28	34	134
108	133	13,28 (1)	2080	1	10 2.2 1.20 00 2 1 2.22	2	20	J4	20	J4	104
121	119	11,86	2060	1,15							
141	101	10,13	2010	1,3							
175	82	8,16	1870	1,5							
188	76	7,63 (1)	1850	1,55							
217	66	6,59	1800	1,65							
255	56	5,6 (1)	1740	1,8							
286	50	5 (1)	1700	1,95							
335	43	4,27	1640	2,1							
358	40	4 (1)	1610	2,2							
424	34	3,37	1540	2,4							
244	59	11,86	1810	2,2	iC 272 - HB3 90 S 2 B12D	46	25	29	25	29	134
285	50	10,13	1750	2,4		2					
354	40	8,16	1620	2,9							
379	38	7,63 (1)	1600	3							
438	33	6,59	1540	3,2							
516	28	5,6 (1)	1480	3,6							
578	25	5 (1)	1430	3,8							
677	21	4,27	1370	4,1							
723	20	4 (1)	1350	4,3							
858	17	3,37	1290	4,7							

⁽¹⁾ Endliche Übersetzung i

$P_1 = 2,2$	2 kW							£	3		p.
n ₂	M ₂	i	F _{r2}	fs			Fül	3en	g Flar	nsch	ر ا
min ⁻¹	N m		N				НВ	HBZ	НВ	HBZ	
6,7	3156	216,28	13800	1,05	iC 973 - HB3 100 LA 4 B30E		153	159	160	175	148
7,7	2718	186,3	22900	1,25	10 0.0 1.20 100 2.1 1 2002	3	100	133	103	173	140
8,5	2481	170,02	24300	1,35		3					
9,6	2200	150,78	25600	1,5							
11	1849	126,75	27000	1,8							
12	1699	116,48	27400	1,95							
14	1509	103,44	27600	2,2							
16	1349	92,48	27900	2,4							
17	1213	83,15	28000	2,7							
20	1053	72,17	28200	3,1							
22	951	65,21	27500	3,4							
24	874	59,92	26800	3,7							
27	776	53,21	25900	4,1							
30	694	47,58	25000	4,6							
12	1823	124,97	13900	0,95	iC 873 - HB3 100 LA 4 B25E		102	108	110	116	146
12	1728	118,43 (1)	15700	1		3					
14	1512	103,65	17300	1,15							
15	1362	93,38	18200	1,3							
18	1195	81,92	19000	1,45							
20	1059	72,57	19600	1,65							
23	929	63,68 (1)	20000	1,85							
24	881	60,35 (1)	20000	1,95							
27	771	52,82	20000	2,2							
30	694	47,58	20000	2,5							
34	609	41,74	19700	2,8							
39	537	36,84 (1)	19000	3,2							
44	476	32,66 (1)	18400	3,5							
42	502	34,4 (1)	18700	3,4	iC 872 - HB3 100 LA 4 B25E	41-	100	106	108	114	146
46	458	31,4	18200	3,7		2					
52	406	27,84 (1)	17500	4,1							
62	341	23,4	16700	4,6							
67	314	21,51	16200	4,9							
22	960	65,77	7900	0,95	iC 773 - HB3 100 LA 4 B20E		67	73	74	80	144
25	842	57,68	9770	1,05		3					
28	760	52,07	10500	1,15							
31	668	45,81	11200	1,35							
33	631	43,26	11400	1,4							
39	537	36,83	11900	1,65							
43	488	33,47	12100	1,75							
50	423	29	12000	1,95							
57	368	25,23	11600	2,1							
62	341	23,37	11400	2,4	iC 772 - HB3 100 LA 4 B20E	-	66	72	73	79	144
67	313	21,43	11100	2,6		2					
77	274	18,8	10700	2,9							

 $^{^{} ext{(1)}}$ Endliche Übersetzung i

$P_1 = 2.2$	kW							£	3		
		_	_	_					g		p.
n ₂	M ₂	i	F _{r2}	fs		~		ßen	Flar		
min ⁻¹	N m		N				НВ	HBZ	нв	HBZ	
81	260	17,82 (1)	10500	3	iC 772 - HB3 100 LA 4 B20E	4	66	72	73	79	144
92	228	15,6	10100	3,3		2					
102	205	14,05	9830	3,5							
36	582	39,88 (1)	7820	1,05	iC 673 - HB3 100 LA 4 B16E		60	66	63	69	142
38	547	37,5	8180	1,1		3					
45	471	32,27	8850	1,2							
50	421	28,83	9220	1,3							
61	342	23,44	9070	1,85	iC 672 - HB3 100 LA 4 B16E	2	59	65	62	68	142
72	290	19,89	8700	2,3		2					
80	262	17,95	8470	2,4							
91	230	15,79	8180	2,6							
97	218	14,91	8050	2,7							
113	185	12,7	7700	2,9							
125	168	11,54	7500	3,1							
144	146	10	7190	3,3							
166	127	8,7 (1)	6910	3,5							
185	114	7,79 37.3 ⁽¹⁾	6700	3,4	:0 572 UD2 400 LA A D405		57	63	60	66	
39 41	544 512	37,3 ⁽¹⁾ 35,07	5120 5100	0,85 0,9	iC 573 - HB3 100 LA 4 B16E	3	52	58	55	61	140
48	440	30,18	5100 5010	1,05		3 📲					
53	393	26,97	4940	1,05							
66	320	21,93	4780	1,45	iC 572 - HB3 100 LA 4 B16E		E4	57	54	60	140
77	271	18,6 (1)	4630	1,7	10 072 11B0 100 EA 4 B10E	2	51	31	54	00	140
86	245	16,79	4540	1,9		2					
97	216	14,77 (1)	4420	2,1							
103	204	13,95 ⁽¹⁾	4360	2,3							
121	173	11,88	4210	2,6							
133	157	10,79	4110	2,8							
154	136	9,35	3970	3							
159	132	9,06	3950	2,9			49	55	52	58	
181	116	7,97	3820	3,1							
132	159	21,93	4120	2,9	iC 572 - HB3 90 LA 2 B16D	4	40	46	43	49	140
155	135	18,6 (1)	3960	3,4		2					
172	122	16,79	3860	3,7							
196	107	14,77 (1)	3730	4,1							
207	101	13,95 ⁽¹⁾	3680	4,3							
75	281	19,27	3540	1,15	iC 472 - HB3 100 LA 4 B16E	4	45	51	46	52	138
89	237	16,22	3450	1,3		2					
99	212	14,56	3380	1,35							
115	183	12,54	3290	1,5							
122	172	11,79	3250	1,55							
142	148	10,15	3140	1,7							
159	132	9,07	3070	1,8							
180	117	8,01	2980	1,95							

⁽¹⁾ Endliche Übersetzung i

									_		
$P_1 = 2,2$	2 KW			ı			,	k	g		p.
n ₂	$M_{_2}$	i	F_{r2}	fs			Füí	⊾ 3en		nsch	
min ⁻¹	N m		N				НВ	HBZ	НВ	HBZ	
186	113	7,76 (1)	2890	1,65	iC 472 - HB3 100 LA 4 B16E	Ja	45	51	46	52	138
207	102	6,96	2820	1,75		2	45	31	70	52	150
240	88	6	2720	2							
255	82	5,64 ⁽¹⁾	2680	2,1							
297	71	4,85	2580	2,4							
332	63	4,34	2510	2,6							
376	56	3,83	2430	2,9							
150	140	19,27	3110	2,1	iC 472 - HB3 90 LA 2 B16D	4	35	41	36	42	138
178	118	16,22	2980	2,3		2					
198	106	14,56	2910	2,5							
230	91	12,54	2800	2,8							
245	86	11,79	2760	2,9							
285	74	10,15	2650	3,1							
319	66	9,07	2570	3,4							
361	58	8,01	2490	3,5			34	40	35	41	
92	228	15,6	1180	0,9	iC 372 - HB3 100 LA 4 B12E	2	37	43	39	45	136
109	193	13,25	1740	1		2					
122	173	11,83	2060	1,1							
142	147	10,11	2410	1,2							
152	138	9,47	2530	1,25							
181	116	7,97	2790	1,35							
216	97	6,67	2500	1,5							
254	83	5,67	2550	1,75							
285 333	74 63	5,06 4,32	2490 2400	1,85 2							
356	59	4,05	2360	2,1							
422	50	3,41	2260	2,3							
185	113	15,6	2770	1,75	iC 372 - HB3 90 LA 2 B12D		28	34	30	36	136
218	96	13,25	2680	2		2	20	54	30	30	100
244	86	11,83	2610	2,1		2-					
286	73	10,11	2520	2,3							
305	69	9,47	2480	2,4							
362	58	7,97	2370	2,7							
433	48	6,67	2240	3							
510	41	5,67	2150	3,5							
571	37	5,06	2080	3,7							
669	31	4,32	1990	4							
714	29	4,05	1960	4,2							
848	25	3,41	1860	4,5							
142	148	10,13	1180	0,9	iC 272 - HB3 100 LA 4 B12E	1	36	42	37	43	134
218	96	6,59	1180	1,15		2					
257	82	5,6 ⁽¹⁾	1430	1,25							
288	73	5 (1)	1570	1,3							

 $^{^{} ext{(1)}}$ Endliche Übersetzung i

$P_1 = 2,2$	kW							S	<u>}</u>		p.
n ₂	M ₂	i	F _{r2}	fs			Fü	ßen	او Flar	nsch	ٺ
min ⁻¹	N m		N				НВ	HBZ	НВ	HBZ	
337	62	4,27	1530	1,4	iC 272 - HB3 100 LA 4 B12E	4	36	42	37	43	134
360	58	4 (1)	1510	1,45		2					
427	49	3,37	1460	1,6							
218	97	13,28 (1)	1700	1,35	iC 272 - HB3 90 LA 2 B12D	4	27	33	27	33	134
244	86	11,86	1680	1,5		2					
285	74	10,13	1630	1,65							
438	48	6,59	1450	2,2							
516	41	5,6 (1)	1400	2,4							
578	36	5 (1)	1360	2,6							
677	31	4,27	1320	2,8							
723	29	4 (1)	1290	2,9							
858	24	3.37	1240	3.2							

$P_1 = 3 \text{ H}$	cW										
9,6	2979	150,78	21000	1,1	iC 973 - HB3 112 MA 4 B30E		160	166	176	182	148
11	2504	126,75	24100	1,3		3					
12	2301	116,48	25100	1,4							
14	2044	103,44	26200	1,6							
16	1827	92,48	27100	1,8							
17	1643	83,15	27400	1,95							
20	1426	72,17	27500	2,3							
22	1288	65,21	26700	2,5							
24	1184	59,92	26100	2,7							
27	1051	53,21	25300	3							
30	940	47,58	24500	3,4							
34	845	42,78	23800	3,8							
39	734	37,13	22800	4,2							
44	657	33,25	22100	4,5							
16	1845	93,38	12100	0,95	iC 873 - HB3 112 MA 4 B25E	-	110	116	118	124	146
18	1619	81,92	16500	1,05		3					
20	1434	72,57	17700	1,2							
23	1258	63,68 (1)	18700	1,35							
24	1192	60,35 (1)	19000	1,45							
27	1044	52,82	19700	1,65							
30	940	47,58	19800	1,8							
35	825	41,74	19200	2,1							
39	728	36,84 (1)	18500	2,3							
44	645	32,66 (1)	17900	2,6							
52	551	27,88	17200	3							
42	680	34,4 (1)	18200	2,5	iC 872 - HB3 112 MA 4 B25E	1	108	114	116	122	146
46	620	31,4	17700	2,7		2					
52	550	27,84 (1)	17200	3							
62	462	23,4	16300	3,4							

 $^{^{(1)}}$ Endliche Übersetzung i

D = 2 l	->0/							_	2		
$P_1 = 3 \text{ k}$	CVV							k	g		p.
$n_{_2}$	M ₂	i	F _{r2}	fs			Füß	Sen _	Flar	sch	
min ⁻¹	N m		N				НВ	HBZ	НВ	HBZ	
67	425	21,51	15900	3,6	iC 872 - HB3 112 MA 4 B25E	4.	108	114	116	122	146
76	377	19,1	15400	3,9		2					
85	337	17,08 (1)	14900	4,2							
94	303	15,35	14400	4,5							
32	905	45,81	9090	1	iC 773 - HB3 112 MA 4 B20E		76	82	83	89	144
34	855	43,26	9620	1,05		3					
39	728	36,83	10700	1,2							
43	661	33,47	11200	1,3							
50	573	29	11600	1,45							
57	499	25,23	11200	1,55							
62	462	23,37	11000	1,8	iC 772 - HB3 112 MA 4 B20E	4	75	81	82	88	144
68	423	21,43	10700	1,95		2					
77	372	18,8	10400	2,1		_					
81	352	17,82 (1)	10200	2,2							
93	308	15,6	9870	2,4							
103	278	14,05	9600	2,6							
118	244	12,33	9250	2,9							
133	215	10,88	8930	3,1							
150	191	9,64	8620	3,3			72	78	78	84	
169	170	8,59	8400	3,7							
187	153	7,74	8140	4							
214	134	6,79	7830	4,3							
62	463	23,44	8660	1,35	iC 672 - HB3 112 MA 4 B16E	4	67	73	69	75	142
73	393	19,89	8350	1,65		2					
81	355	17,95	8150	1,8							
92	312	15,79	7900	1,95							
97	295	14,91	7790	2							
114	251	12,7	7470	2,2							
126	228	11,54	7290	2,3							
145	198	10	7010	2,4							
54	533	26,97	4430	0,9	iC 573 - HB3 112 MA 4 B16E	3	59	65	62	68	140
						3					
66	433	21,93	4360	1,1	iC 572 - HB3 112 MA 4 B16E	4	58	64	61	67	140
78	368	18,6 (1)	4280	1,25		2					
86	332	16,79	4220	1,4		_					
98	292	14,77 (1)	4140	1,6							
104	276	13,95 (1)	4100	1,65							
122	235	11,88	3980	1,9							
134	213	10,79	3900	2							
155	185	9,35	3790	2,2							
160	179	9,06	3780	2,2			56	62	60	66	
182	158	7,97	3670	2,3							
193	149	7,53	3620	2,4							
226	127	6,41	3480	2,7							

 $^{^{(1)}}$ Endliche Übersetzung i

$P_1 = 3 \text{ H}$	¢₩							£	<u> </u>		
		i	E	fs			Ent	k 3en	g	nsch	p.
n ₂	M ₂	,	F _{r2}	13						HBZ	
min ⁻¹	N m	F 00	N 2400	2.0	io 570 UD2 440 MA 4 D405						
249 287	115 100	5,82	3400	2,8 3,1	iC 572 - HB3 112 MA 4 B16E	2	56	62	60	66	140
330	87	5,05 4,39	3270 3160	3,1		2 1					
134	214	21,93	3920	2,1	iC 572 - HB3 100 LA 2 B16E		49	55	52	58	140
158	182	18,6 (1)	3790	2,5	10 0/2 1130 100 EX 2 2 102	2	43	55	32	50	140
174	164	16,79	3700	2,7		2-					
198	144	14,77 (1)	3600	3							
210	136	13,95 ⁽¹⁾	3550	3,2							
247	116	11,88	3410	3,5							
271	106	10,79	3330	3,7							
89	320	16,22	2210	0,95	iC 472 - HB3 112 MA 4 B16E	4	53	59	54	60	138
100	288	14,56	2650	1		2					
116	248	12,54	3040	1,1							
123	233	11,79	3020	1,15							
143	201	10,15	2950	1,25							
160	179	9,07	2890	1,35							
181	158	8,01	2820	1,45			52	58	53	59	
187	153	7,76 (1)	2720	1,2							
208	138	6,96	2660	1,3							
242 257	119	5.64 ⁽¹⁾	2590	1,5							
299	111 96	5,64 ⁽¹⁾ 4,85	2550 2470	1,55 1,75							
334	86	4,83	2410	1,75							
378	76	3,83	2340	2,1							
248	115	11,79	2650	2,1	iC 472 - HB3 100 LA 2 B16E	4,	43	49	44	50	138
289	99	10,15	2560	2,3	12 112 112 112 21 2 2 12	2	40	75	77	30	100
323	89	9,07	2490	2,5							
366	78	8,01	2410	2,6							
378	76	7,76 (1)	2350	2,3							
421	68	6,96	2290	2,5							
489	59	6	2200	2,7							
520	55	5,64 (1)	2170	2,8							
604	47	4,85	2080	3,2							
676	42	4,34	2020	3,4							
765	37	3,83	1950	3,8		_					
143	200	10,11	920	0,9	iC 372 - HB3 112 MA 4 B12E		46	52	48	54	136
153	187	9,47	1140	0,9		2					
182	158	7,97	1610	1							
217	132	6,67	1350	1,1			45	51	47	53	
256 287	112 100	5,67 5,06	1700 1900	1,25 1,35							
336	85	4,32	2110	1,55							
358	80	4,05	2180	1,55							
425	67	3,41	2160	1,65							
723	01	0,71	2100	1,00			I	l		l	

⁽¹⁾ Endliche Übersetzung i

$P_1 = 3 \text{ k}$	cW							Ş İk	g		p.
n ₂	M ₂	i	F _{r2}	fs			Füí	Sen	Flar	nsch	ٺ
min ⁻¹	N m		N				НВ	HBZ	НВ	HBZ	
290	99	10,11	2380	1,7	iC 372 - HB3 100 LA 2 B12E	4	35	41	37	43	136
310	93	9,47	2360	1,8		2					
367	78	7,97	2270	2							
439	65	6,67	2150	2,2							
517	55	5,67	2070	2,6							
579	49	5,06	2020	2,7							
678	42	4,32	1940	3							
724	40	4,05	1900	3,1							
859	33	3,41	1820	3,4							
259	111	5,6 (1)	455	0,9	iC 272 - HB3 112 MA 4 B12E	1	45	51	45	51	134
290	99	5 (1)	695	0,95		2					
340	84	4,27	970	1,05							
363	79	4 (1)	1070	1,1							
430	67	3,37	1280	1,2							
445	64	6,59	1290	1,65	iC 272 - HB3 100 LA 2 B12E	4-	34	40	35	41	134
523	55	5,6 (1)	1320	1,8		2					
586	49	5 (1)	1290	1,95							
686	42	4,27	1250	2,1							
733	39	4 (1)	1240	2,2							
870	33	3,37	1190	2,4							

P ₁ = 4 k	cW										
12	3069	116,48	18300	1,05	iC 973 - HB3 112 M 4 B30F		162	171	178	187	148
14	2725	103,44	22900	1,2		3					l
16	2436	92,48	24500	1,35							l
17	2191	83,15	25700	1,5							l
20	1901	72,17	26500	1,7							l
22	1718	65,21	25800	1,85							l
24	1579	59,92	25300	2							l
27	1402	53,21	24600	2,3							l
30	1253	47,58	23800	2,5							l
34	1127	42,78	23200	2,8							l
39	978	37,13	22300	3,2							l
44	876	33,25	21600	3,4							L
45	844	32,05	21400	3,4	iC 972 - HB3 112 M 4 B30F	41-	158	167	174	183	148
53	716	27,19	20400	4		2					l
58	659	25,03	20000	4,4							l
65	589	22,37	19300	4,8							l
72	531	20,14	18700	5,1							
23	1678	63,68 (1)	13700	1,05	iC 873 - HB3 112 M 4 B25F	-	112	121	120	129	146
24	1590	60,35 (1)	14300	1,1		3					l
27	1391	52,82	15500	1,25							l
30	1254	47,58	16300	1,35							ı

 $^{^{(1)}}$ Endliche Übersetzung i

P ₁ = 4	¢₩							Ş	3		p.
n ₂	M ₂	i	F ₁₂	fs			Fül	ßen	g Flar	nsch	٢.
min ⁻¹	N m		N				НВ	HBZ	НВ	HBZ	
35	1100	41,74	17000	1,55	iC 873 - HB3 112 M 4 B25F		112	121	120	129	146
39	970	36,84 (1)	17500	1,75		3					
44	860	32,66 (1)	17400	1,95							
52	735	27,88	16700	2,2							
42	906	34,4 (1)	17600	1,85	iC 872 - HB3 112 M 4 B25F	4	110	119	118	127	146
46	827	31,4	17200	2		2					
52	734	27,84 (1)	16700	2,3							
62	617	23,4	15900	2,6							
67	567	21,51	15600	2,7							
76	503	19,1	15100	2,9							
85	450	17,08 (1)	14600	3,2							
94	405	15,35	14200	3,4							
109	351	13,33	13600	3,7							
122	314	11,93	13200	4							
39	970	36,83	7260	0,9	iC 773 - HB3 112 M 4 B20F	-	78	87	85	94	144
43	882	33,47	9400	0,95		3					
50	764	29	10500	1,1							
57	665	25,23	10700	1,2							
62	616	23,37	10500	1,35	iC 772 - HB3 112 M 4 B20F	41-	77	86	84	93	144
68	565	21,43	10300	1,45		2					
77	495	18,8	10000	1,6							
81	469	17,82 (1)	9880	1,7							
93	411	15,6	9560	1,8							
103	370	14,05	9310	1,95							
118	325	12,33	9000	2,1							
133	287	10,88	8700	2,3							
150	254	9,64	8420	2,5			74	83	80	89	
169	226	8,59	8240	2,8							
187	204	7,74	8000	3							
214	179	6,79	7700	3,3							
242	158	5,99 (1)	7420	3,5							
273	140	5,31 (1)	7160	3,7							
73	524	19,89	7910	1,25	iC 672 - HB3 112 M 4 B16F	4	69	78	71	80	142
81	473	17,95	7750	1,35		2					
92	416	15,79	7550	1,45							
97	393	14,91	7460	1,5							
114	335	12,7	7190	1,6							
126	304	11,54	7030	1,7							
145	263	10	6790	1,8							
167	229	8,7 (1)	6550	1,95							
186	205	7,79	6390	1,85			67	76	70	79	
197	194	7,36 (1)	6290	1,95							
231	165	6,27	6020	2							
255	150	5,7	5860	2,1							

⁽¹⁾ Endliche Übersetzung i

$P_1 = 4 \text{ k}$	¢₩							£	<u> </u>		
n ₂	M ₂	i	F _{r2}	fs			For	k Sen	g Flar	nsch	p.
		-		,,,						HBZ	
min ⁻¹	N m		N								
294	130	4,93	5630	2,2	iC 672 - HB3 112 M 4 B16F		67	76	70	79	142
338	113	4,29	5410	2,4	10 F70 UD0 440 M 4 D40F	2				_	
78 86	490	18,6 ⁽¹⁾ 16,79	3680	0,95	iC 572 - HB3 112 M 4 B16F	2	60	69	63	72	140
98	442	16,79	3820	1,05		2 1					
90 104	389 368	13,95 (1)	3790 3770	1,2 1,25							
104	313	11,88	3700	1,45							
134	284	10,79	3650	1,55							
155	246	9,35	3560	1,65							
160	239	9,06	3570	1,63			58	67	62	71	
182	210	7,97	3480	1,75			50	07	UZ	/ 1	
193	198	7,53	3440	1,73							
226	169	6,41	3330	2							
249	153	5,82	3260	2,1							
287	133	5,05	3160	2,3							
330	116	4,39	3050	2,4							
143	267	10,15	2070	0,95	iC 472 - HB3 112 M 4 B16F		55	64	56	65	138
160	239	9,07	2450	1		2					
181	211	8,01	2630	1,1			54	63	55	64	
208	183	6,96	2470	1							
242	158	6	2420	1,1							
257	149	5,64 (1)	2400	1,2							
299	128	4,85	2340	1,35							
334	114	4,34	2290	1,45							
378	101	3,83	2230	1,6							
181	211	16,22	2630	1,3	iC 472 - HB3 112 M 2 B16F	4	53	59	54	60	138
202	189	14,56	2590	1,4		2					
234	163	12,54	2520	1,55							
249	153	11,79	2500	1,6							
290	132	10,15	2430	1,75							
324	118	9,07	2370	1,85							
367	104	8,01	2310	1,95			52	58	53	59	
379	101	7,76 (1)	2230	1,75							
422	90	6,96	2180	1,85							
490	78	6	2110	2							
521	73	5,64 (1)	2080	2,1							
606	63	4,85	2010	2,4							
678	56	4,34	1950	2,6							
767	50	3,83	1890	2,9							

 $^{^{(1)}}$ Endliche Übersetzung i

$P_1 = 5,5$	5 kW							5	<u> </u>		
n ₂	M ₂	i	F _{r2}	fs			For	k 3en	g Flar	sech	p.
min ⁻¹		•		73				HBZ			
	N m	00.45	N 20000	4.4	ic 072 UP2 422 C 4 D20C						
18 20	2971 2579	83,15 72,17	20000 22100	1,1 1,25	iC 973 - HB3 132 S 4 B30G	3	186	197	202	213	148
23	2379	65,21	24600	1,4		3 1					
25 25	2141	59,92	24100	1,4							
28	1901	53,21	23500	1,7							
31	1700	47,58	22900	1,7							
34	1528	42,78	22400	2,1							
40	1327	37,13	21600	2,3							
44	1188	33,25	21000	2,5							
53	986	27,58	20000	2,8							
46	1145	32,05	20800	2,5	iC 972 - HB3 132 S 4 B30G		192	193	100	200	148
54	971	27,19	19900	3	10 0.12 1.120 102 0 1 2000	2	102	193	190	209	140
59	894	25,03	19500	3,3		2-1					
66	799	22,37	18900	3,5							
73	720	20,14	18300	3,8							
81	652	18,24	17800	4,1							
91	578	16,17	17200	4,4							
31	1700	47,58	15700	1	iC 873 - HB3 132 S 4 B25G		137	148	144	155	146
35	1492	41,74	17300	1,15		3					
40	1316	36,84 (1)	17100	1,3							
45	1167	32,66 (1)	16600	1,45							
53	996	27,88	16100	1,65							
53	995	27,84 (1)	16000	1,7	iC 872 - HB3 132 S 4 B25G	4	135	146	143	154	146
63	836	23,4	15400	1,9		2					
68	769	21,51	15100	2							
77	682	19,1	14600	2,2							
86	610	17,08 (1)	14200	2,3							
96	549	15,35	13800	2,5							
110	476	13,33	13300	2,7							
123	426	11,93	12900	2,9							
148	354	9,9 (1)	12200	3,3							
161	327	9,14 (1)	12100	3,7			127	138	135	146	
179	294	8,22	11700	3,9							
206	255	7,13	11200	4,2		_					
78	672	18,8	9320	1,15	iC 772 - HB3 132 S 4 B20G	2	100	111	106	117	144
82	637	17,82 (1)	9360	1,25		2					
94	557	15,6	9110	1,35							
105	502	14,05	8910	1,45							
119 135	440 389	12,33 10,88	8650 8390	1,55 1,7							
152	345	9,64	8150	1,7			00	107	100	111	
171	343	8,59	8030	2,1			96	107	103	114	
190	277	7,74	7810	2,1							
216	243	6,79	7530	2,4							
	1 2.3	5,10	. 555	_, -, -	I	I	I	l			

⁽¹⁾ Endliche Übersetzung i

									_		
$P_{1} = 5,5$	kW							- k	g g		p.
$n_{_2}$	$M_{_2}$	i	F_{r2}	fs			Fül	⊾ ßen	Flar	sch	
min ⁻¹	N m		N				НВ	HBZ	НВ	HBZ	
245	214	5,99 (1)	7270	2,5	iC 772 - HB3 132 S 4 B20G		96	107	103	114	144
277	190	5,31 ⁽¹⁾	7030	2,7		2		107	100		1-1-1
93	564	15,79	6720	1,05	iC 672 - HB3 132 S 4 B16G	4	92	103	95	106	142
99	533	14,91	6980	1,1		2					
116	454	12,7	6790	1,2							
127	412	11,54	6660	1,25							
147	357	10	6470	1,35							
169	311	8,7 (1)	6280	1,4							
189	279	7,79	6150	1,35			90	101	93	104	
200	263	7,36 (1)	6070	1,4							
235	224	6,27	5830	1,45							
258	203	5,7	5690	1,5							
298	176	4,93	5480	1,65							
342	153	4,29	5280	1,75							
340	154	8,7 (1)	5280	2,9	iC 672 - HB3 132 S 2 B16G	-	87	98	90	101	142
380	138	7,79	5140	2,7		2	85	96	88	99	
402	131	7,36 (1)	5060	2,8							
472	111	6,27	4830	3							
520	101	5,7	4700	3,1							
600	88	4,93	4510	3,3							
689	76	4,29	4330	3,5							
100	528	14,77 (1)	1860	0,85	iC 572 - HB3 132 S 4 B16G	4	84	95	87	98	140
105	498	13,95 ⁽¹⁾	2200	0,9		2					
124	424	11,88	3000	1,05							
136	386	10,79	3270	1,15							
157	334	9,35	3240	1,25							
184	285	7,97	3210	1,3			82	93	85	96	
195	269	7,53	3190	1,3							
229	229	6,41	3110	1,45							
252	208	5,82	3060	1,55							
291	180	5,05	2980	1,7							
335	157	4,39	2900	1,8							
317	166	9,35	2920	2,2	iC 572 - HB3 132 S 2 B16G		79	90	82	93	140
371	141	7,97	2840	2,5		2	77	88	80	91	
393	134	7,53	2800	2,6							
462	114	6,41	2700	2,9							
508	103	5,82	2640	3,1							
587	90	5,05	2550	3,4							
674	78	4,39	2460	3,6							
303	173	4,85	1920	1	iC 472 - HB3 132 S 4 B16G		78	89	79	90	138
339	155	4,34	2110	1,05		2					
384	137	3,83	2070	1,15							

 $^{^{} ext{(1)}}$ Endliche Übersetzung i

$P_1 = 5,5$	kW							£	ને g		p.
n ₂	M ₂	i	F _{r2}	fs			Fü	ßen	_	nsch	ب
min ⁻¹	N m		N				НВ	HBZ	НВ	HBZ	
236	223	12,54	1780	1,1	iC 472 - HB3 132 S 2 B16	G	73	84	74	85	138
251	209	11,79	1970	1,15		2					
292	180	10,15	2250	1,3							
326	161	9,07	2210	1,35							
369	142	8,01	2170	1,45							
494	106	6	1990	1,5							
525	100	5,64 (1)	1970	1,55							
610	86	4,85	1910	1,75							
683	77	4,34	1860	1,9							
773	68	3,83	1810	2,1							ı

$P_1 = 7,5$	kW										
24	2940	59,92	21500	1,1	iC 973 - HB3 132 M 4 B30G	4.1	194	205	210	221	148
27	2611	53,21	22100	1,2		3					
31	2334	47,58	21600	1,35							
34	2099	42,78	21200	1,5							
39	1821	37,13	20600	1,7							
44	1631	33,25	20100	1,8							
53	1353	27,58	19200	2,1							
46	1572	32,05	19900	1,85	iC 972 - HB3 132 M 4 B30G	4	190	201	206	217	148
54	1334	27,19	19200	2,2		2					
58	1228	25,03	18800	2,4							
65	1098	22,37	18300	2,6							
72	988	20,14	17800	2,8							
80	895	18,24	17300	3							
40	1807	36,84 (1)	14700	0,95	iC 873 - HB3 132 M 4 B25G		145	156	152	163	146
45	1602	32,66 (1)	15600	1,05		3					
52	1368	27,88	15200	1,2							
52	1366	27,84 (1)	15200	1,25	iC 872 - HB3 132 M 4 B25G	1	143	154	151	162	146
62	1148	23,4	14600	1,4		2					
68	1055	21,51	14400	1,45							
76	937	19,1	14000	1,55							
85	838	17,08 (1)	13700	1,7							
95	753	15,35	12600	1,8							
110	654	13,33	12900	2							
122	585	11,93	12500	2,1							
147	486	9,9 (1)	11900	2,4			135	146	143	154	
160	449	9,14 (1)	11800	2,7							
178	403	8,22	11500	2,9							
205	350	7,13	11000	3,1							
229	313	6,39	10700	3,3							
275	260	5,3 (1)	10100	3,5							

⁽¹⁾ Endliche Übersetzung i

$P_1 = 7,5$	kW							<i>5</i>	<u>}</u>		p.
n ₂	M ₂	i	F _{r2}	fs			Füß	Sen	او Flar	nsch	ٺ
min ⁻¹	N m		N				НВ	HBZ	НВ	HBZ	
78	922	18,8	5520	0,85	iC 772 - HB3 132 M 4 B20G	46	108	119	114	125	144
82	874	17,82 ⁽¹⁾	5910	0,9		2				0	
94	765	15,6	6760	0,95							
104	689	14,05	7300	1,05							
118	605	12,33	7850	1,15							
134	534	10,88	7960	1,25							
151	473	9,64	7770	1,35			104	115	111	122	
170	422	8,59	7690	1,5							
189	380	7,74	7540	1,6							
215	333	6,79	7300	1,75							
244	294	5,99 ⁽¹⁾	7060	1,85							
275	261	5,31 (1)	6840	1,95							
115	623	12,7	4420	0,85	iC 672 - HB3 132 M 4 B16G	4	100	111	103	114	142
127	566	11,54	5010	0,9		2					
146	490	10	5740	0,95							
168	427	8,7 (1)	5900	1,05							
187	382	7,79	5600	1			98	109	101	112	
198	361	7,36 (1)	5760	1,05							
233	307	6,27	5570	1,1							
256	279	5,7	5450	1,1							
296	242	4,93	5270	1,2							
340	211	4,29	5100	1,3							
183	391	7,97	1120	0,95	iC 572 - HB3 132 M 4 B16G	4	90	101	93	104	140
194	369	7,53	1410	0,95		2					
228	314	6,41	2120	1,05							
251	286	5,82	2470	1,15							
289	248	5,05	2750	1,25							
333	215	4,39	2700	1,3		_					
200	357	14,77 (1)	2620	1,2	iC 572 - HB3 132 SB 2 B16G	2	87	98	90	101	140
212	338	13,95 (1)	2800	1,25		2					
249	287	11,88	2770	1,4							
274	261	10,79	2750	1,5							
317	226	9,35	2700	1,65							
371	193	7,97	2660	1,85			86	97	89	100	
393	182	7,53	2630	1,9							
462	155	6,41	2560	2,2							
508	141	5,82	2510	2,3							
587	122	5,05	2440	2,5							
674	106	4,39	2360	2,6							

 $^{^{(1)}}$ Endliche Übersetzung i

$P_1 = 9,2$	2 kW							£	3		
n ₂	M ₂	i	F _{r2}	fs			Fül HB	k 3en HBZ	Flar		p.
min ⁻¹	N m		N		Ţ	I					
27	3202	53,21	10800	1	iC 973 - HB3 132 MB 4 B30H		196	208	212	224	148
31	2863	47,58	20600	1,1		3					
34	2574	42,78	20200	1,25							
39	2234	37,13	19800	1,4							
44	2001	33,25	19300	1,5							
53	1660	27,58	18600	1,7		_					
58	1506	25,03	18200	1,95	iC 972 - HB3 132 MB 4 B30H		192	204	208	220	148
65	1346	22,37	17800	2,1		2					
72	1212	20,14	17300	2,3							
80	1098	18,24	16900	2,4							
90	973	16,17	16400	2,6							
100	880	14,62	16000	2,8							
118	746	12,39	15300	3,1		_					
68	1294	21,51	13800	1,2	iC 872 - HB3 132 MB 4 B25H		145	157	153	165	146
76	1149	19,1	13500	1,3		2					
85	1028	17,08 (1)	13200	1,4							
95	924	15,35	12900	1,5							
110	802	13,33	12500	1,65							
122	718	11,93	12200	1,75							
147	596	9,9 (1)	11600	2							
160	550	9,14 (1)	11600	2,2			138	150	146	158	
178	495	8,22	11300	2,4							
205	429	7,13	10900	2,5							
229	384	6,39	10500	2,7		_					
104	846	14,05	4880	0,85	iC 772 - HB3 132 MB 4 B20H		110	122	117	129	144
118	742	12,33	5730	0,95		2					
134	655	10,88	6380	1							
151	580	9,64	6880	1,1			107	119	113	125	
189	466	7,74	6370	1,3							
215	409	6,79	6770	1,45							
244	361	5,99 (1)	6890	1,5							
275	320	5,31 (1)	6690	1,6							

P ₁ = 11	kW										
34	3057	42,78	17800	1,05	iC 973 - HB3 160 M 4 B30H	-	144	-	160	-	148
40	2653	37,13	18900	1,15		3					
44	2376	33,25	18600	1,25							
53	1971	27,58	18000	1,4							
59	1789	25,03	17600	1,65	iC 972 - HB3 160 M 4 B30H	41-	140	-	156	-	148
66	1599	22,37	17200	1,75		2					
73	1439	20,14	16900	1,9							
81	1303	18,24	16500	2							
91	1156	16,17	16000	2,2							

⁽¹⁾ Endliche Übersetzung i

$P_{_{1}} = 11$	kW							9	3		
n ₂	M ₂	i	F _{r2}	fs				Sen_	g Flar HB		p.
min ⁻¹	N m		N		<u> </u>				110		
101	1045	14,62	15600	2,4	iC 972 - HB3 160 M 4 B30H	2	140	-	156	-	148
119	886	12,39	15000	2,6		2					
136	774	10,83	14500	2,9							
158	664	9,29	14200	3,3			128	-	144	-	
175	600	8,39	13800	3,5							
207	508	7,12	13100	3,9							
237	444	6,21	12600	4,3							
68	1537	21,51	13200	1	iC 872 - HB3 160 M 4 B25H	2	91	-	99	-	146
77	1365	19,1	13000	1,1		2					
86	1220	17,08 (1)	12700	1,15							
96	1097	15,35	12500	1,25							
110	952	13,33	12100	1,35							
123	853	11,93	11800	1,45							
148	707	9,9 (1)	11300	1,65							
161	653	9,14 (1)	11400	1,85			83	-	91	-	
179	587	8,22	11100	2							
206	510	7,13	10700	2,1							
230	457	6,39	10400	2,2							
277	379	5,3 (1)	9850	2,4							
135	777	10,88	4400	0,85	iC 772 - HB3 160 M 4 B20H	2	54	-	61	-	144
152	689	9,64	5130	0,9		2	51	-	58	-	
190	553	7,74	4740	1,1							
216	485	6,79	5340	1,2							
245	428	5,99 (1)	5800	1,25							
277	380	5,31 (1)	6140	1,35							

P ₁ = 15	kW										
53	2688	27.58	16500	1.05	iC 973 - HB3 160 L 4 B30H		144	-	160	-	148
						3					
59	2439	25,03	16300	1,2	iC 972 - HB3 160 L 4 B30H	4	140	-	156	-	148
66	2180	22,37	16100	1,3		2					
73	1963	20,14	15800	1,4							
81	1777	18,24	15500	1,5							
91	1576	16,17	15200	1,6							
101	1425	14,62	14900	1,75							
119	1208	12,39	14400	1,95							
136	1055	10,83	13900	2,1							
158	905	9,29	13800	2,4			128	-	144	-	
175	818	8,39	13400	2,5							
207	693	7,12	12800	2,9							
237	606	6,21	12300	3,1							
86	1664	17,08 ⁽¹⁾	11600	0,85	iC 872 - HB3 160 L 4 B25H	4	91	-	99	-	146
96	1496	15,35	11500	0,9		2					

 $^{^{(1)}}$ Endliche Übersetzung i

P ₁ = 15	kW							£	g g		p.
n ₂	M ₂	i	F _{r2}	fs			Fü	ßen	_	nsch	ب
min ⁻¹	N m		N				НВ	HBZ	НВ	HBZ	
110	1299	13,33	11300	1	iC 872 - HB3 160 L 4 B25H	4	91	-	99	-	146
123	1163	11,93	11100	1,1		2					
148	965	9,9 (1)	10700	1,25							
161	891	9,14 (1)	10900	1,35			83	-	91	-	
179	801	8,22	10700	1,45							
206	695	7,13	10300	1,55							
230	623	6,39	10000	1,65							
277	516	5.3 (1)	9570	1.75							

P ₁ = 18	,5 kW										
73	2429	20,14	14900	1,1	iC 972 - HB3 180 M 4 B30L	4	140	-	156	-	148
80	2200	18,24	14700	1,2		2					
91	1951	16,17	14400	1,3							
100	1764	14,62	14200	1,4							
118	1495	12,39	13800	1,55							
135	1306	10,83	13400	1,7							
158	1120	9,29	13400	1,95			128	-	144	-	
175	1012	8,39	13100	2,1							
206	858	7,12	12500	2,4							
236	749	6,21	12100	2,5							
282	627	5,2	11500	2,9							
326	543	4,5 (1)	11100	3							
110	1607	13,33	10500	0,8	iC 872 - HB3 180 M 4 B25L		91	-	99	-	146
123	1439	11,93	10400	0,85		2					
148	1194	9,9 (1)	10200	1							
160	1103	9,14 (1)	10500	1,1			83	-	91	-	
178	991	8,22	10300	1,2							
205	860	7,13	10000	1,25							
229	770	6,39	9750	1,35							
276	639	5,3 (1)	9330	1,45							

P ₁ = 22	kW										
73	2879	20,14	14000	0,95	iC 972 - HB3 180 L 4 B30L	4	140	-	156	-	148
81	2607	18,24	13900	1		2					
91	2312	16,17	13700	1,1							
101	2090	14,62	13500	1,2							
119	1772	12,39	13200	1,3							
136	1547	10,83	12900	1,45							
158	1327	9,29	13100	1,65			128	-	144	-	
175	1200	8,39	12800	1,75							
207	1017	7,12	12300	2							
237	888	6,21	11900	2,1							

⁽¹⁾ Endliche Übersetzung i

P ₁ = 22	kW							£ lk	g		p.
n ₂	M ₂	i	F _{r2}	fs			Füſ		Flar	sch	ٺ
min ⁻¹	N m		N				НВ	HBZ	НВ	HBZ	
283	743	5,2	11300	2,4	iC 972 - HB3 180 L 4 B30L	4-	128	-	144	-	148
327	643	4,5 (1)	10900	2,5		2					
148	1415	9,9 (1)	9630	0,85	iC 872 - HB3 180 L 4 B25L	4	91	-	99	-	146
161	1307	9,14 (1)	10100	0,95		2	83	-	91	-	
179	1175	8,22	9940	1							
206	1020	7,13	9680	1,05							
230	913	6,39	9470	1,1							
277	758	5,3 (1)	9100	1,2							

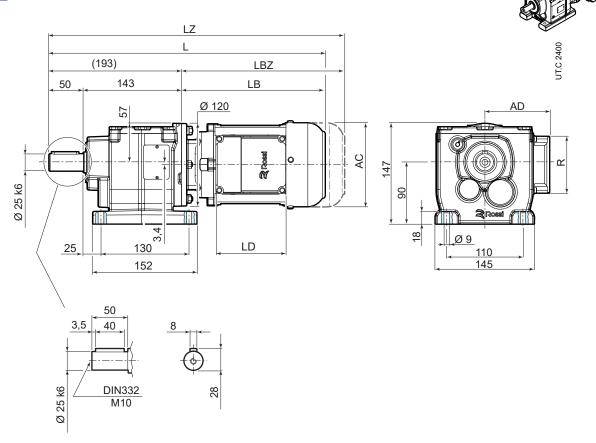
$P_1 = 30$	kW										
101	2850	14,62	12000	0,85	iC 972 - HB3 200 L 4 B30M	41-	146	-	162	-	148
119	2416	12,39	11900	0,95		2					
136	2110	10,83	11800	1,05							
158	1810	9,29	12300	1,2			134	-	150	-	
175	1636	8,39	12000	1,25							
207	1387	7,12	11700	1,45							
237	1211	6,21	11300	1,55							
283	1013	5,2	10900	1,75							
327	877	4,5 (1)	10500	1,85							

 $^{^{} ext{(1)}}$ Endliche Übersetzung i

Leerseite

કોંદુોં 2635-23.03-1

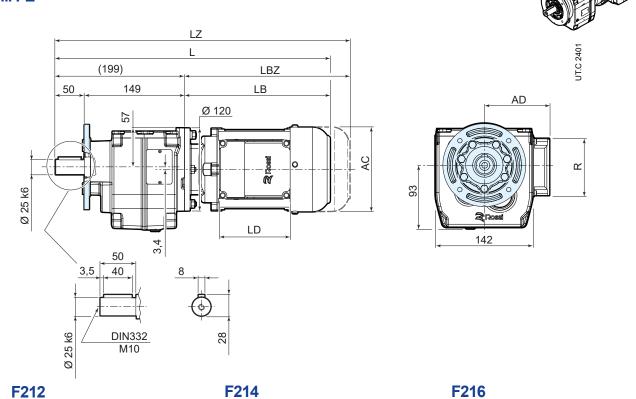
Maßzeichnungen Koaxial - iC

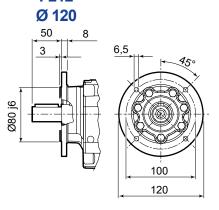


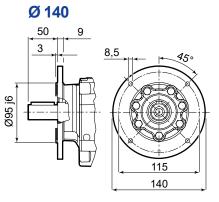
Sektioninhalt

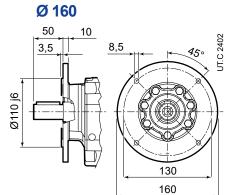
10.1	iC 27	134
10.2	iC 37	136
10.3	iC 47	138
10.4	iC 57	140
10.5	iC 67	142
10.6	iC 77	144
10.7	iC 87	146
10.8	iC 97	148

iC 27...PE

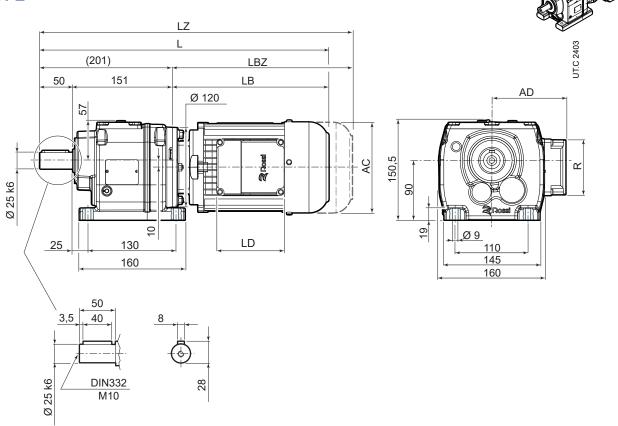

		l	I	I	I	I	I
	63	71	80	90S ^{2) 3)}	90L ³⁾	100 ³⁾	112 ³⁾
AC	123	138	156	176	176	194	218
AD	95	112	121	141	141	151	163
LB	211	237	266	290	320	351	389
LBZ	266	299	335	369	399	446	488
L 1)	404	430	459	483	513	544	582
LZ 1)	459	492	528	562	592	639	681
LD	103	103	103	136	136	136	136
R	86	86	86	106	106	106	106


¹⁾ S. auch Seite 80/81


²⁾ Bei Motor HB3-HB3Z 90S 2, HB3-HB3Z 90S 4 Abmessungen wie Motorgröße 90L


³⁾ Der Motor steht über die Montagefläche des Getriebefußes hinaus

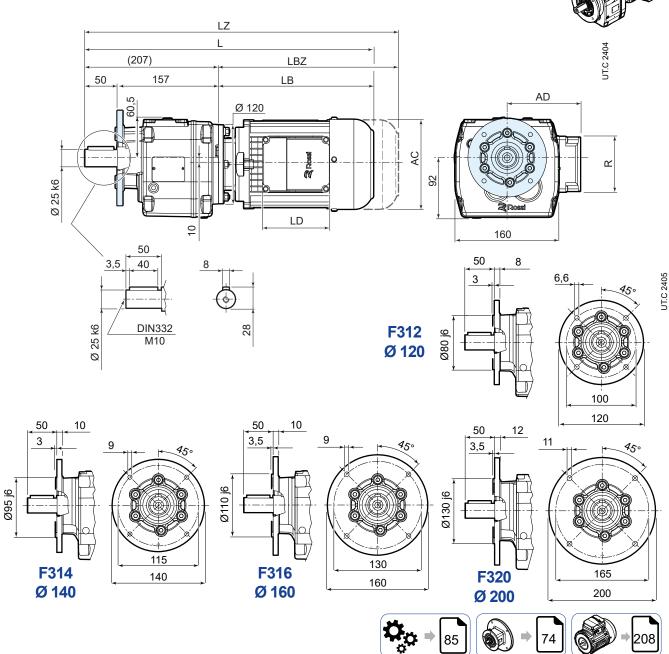
iC 27... FE



		I	I	I.	I	I	ı
	63	71	80	90S ²⁾	90L	100	112
AC	123	138	156	176	176	194	218
AD	95	112	121	141	141	151	163
LB	211	237	266	290	320	351	389
LBZ	266	299	335	369	399	446	488
L 1)	410	436	465	489	519	550	588
LZ 1)	465	498	534	568	598	645	687
LD	103	103	103	136	136	136	136
R	86	86	86	106	106	106	106

 $^{^{1)}\,}$ S. auch Seite 80/81 $^{2)}\,$ Bei Motor HB3-HB3Z 90S 2, HB3-HB3Z 90S 4 Abmessungen wie Motorgröße 90L

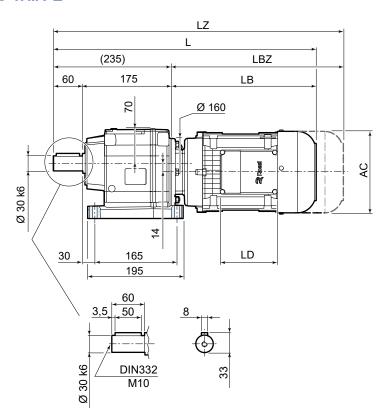
iC 37... PE

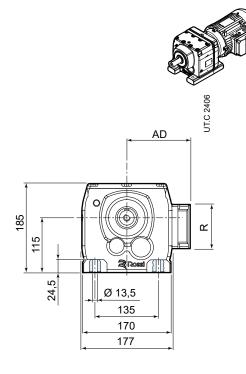

		l	l	I	I	l	I
	63	71	80 ³⁾	90S ^{2) 3)}	90L 3)	100 ³⁾	112 ³⁾
AC	123	138	156	176	176	194	218
AD	95	112	121	141	141	151	163
LB	211	237	266	290	320	351	389
LBZ	266	299	335	369	399	446	488
L 1)	412	438	467	491	521	552	590
LZ 1)	467	500	536	570	600	647	689
LD	103	103	103	136	136	136	136
R	86	86	86	106	106	106	106

¹⁾ S. auch Seite 80/81

²⁾ Bei Motor HB3-HB3Z 90S 2, HB3-HB3Z 90S 4 Abmessungen wie Motorgröße 90L

³⁾ Der Motor steht über die Montagefläche des Getriebefußes hinaus


iC 37... FE

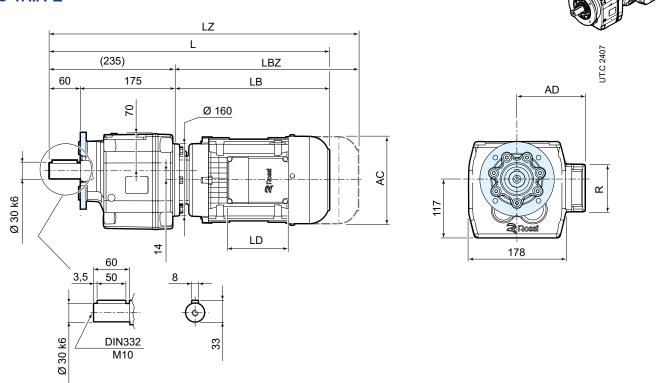


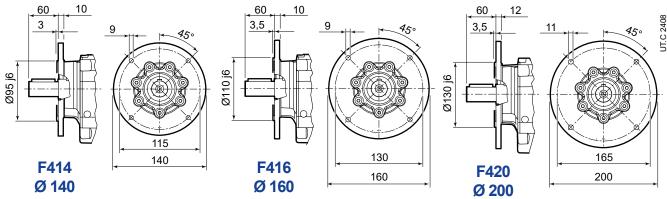
				-			
						1	
	63	71	80	90S ²⁾	90L	100	112
AC	123	138	156	176	176	194	218
AD	95	112	121	141	141	151	163
LB	211	237	266	290	320	351	389
LBZ	266	299	335	369	399	446	488
L 1)	418	444	473	497	527	558	596
LZ 1)	473	506	542	576	606	653	695
LD	103	103	103	136	136	136	136
R	86	86	86	106	106	106	106

 $^{^{1)}\,}$ S. auch Seite 80/81 $^{2)}\,$ Bei Motor HB3-HB3Z 90S 2, HB3-HB3Z 90S 4 Abmessungen wie Motorgröße 90L

iC 47... PE

		I	I	ı	I	I.			1
	63	71	80	90S ²⁾	90L	100 4)	112 ⁴⁾	132S 3) 4)	132M ⁴⁾
AC	123	138	156	176	176	194	218	257	257
AD	95	112	121	141	141	151	163	194	194
LB	205	231	260	283	313	345	383	439	499
LBZ	260	293	329	362	392	440	482	547	607
L 1)	440	466	495	518	548	580	618	674	734
LZ 1)	495	528	564	597	627	675	717	782	842
LD	103	103	103	136	136	136	136	190	190
R	86	86	86	106	106	106	106	148	148

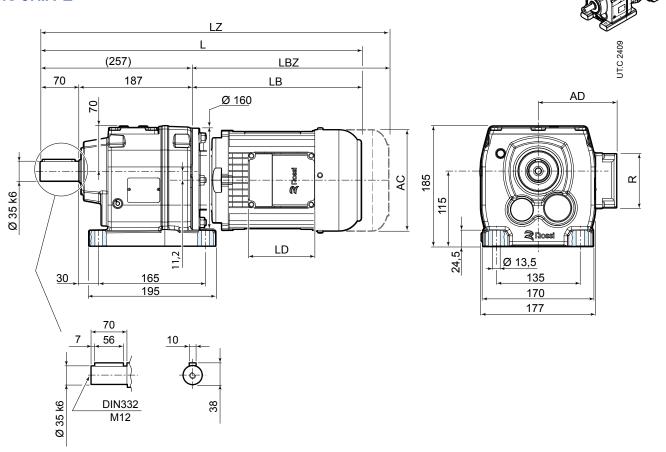

¹⁾ S. auch Seite 80/81


2635-23.03-1

²⁾ Bei Motor HB3-HB3Z 90S 2, HB3-HB3Z 90S 4 Abmessungen wie Motorgröße 90L ³⁾ Bei Motor HB3-HB3Z 132SB 2, HB3-HB3Z 132SC 2, HB3-HB3Z 132S 4 Abmessungen wie Motorgröße 132M

⁴⁾ Der Motor steht über die Montagefläche des Getriebefußes hinaus

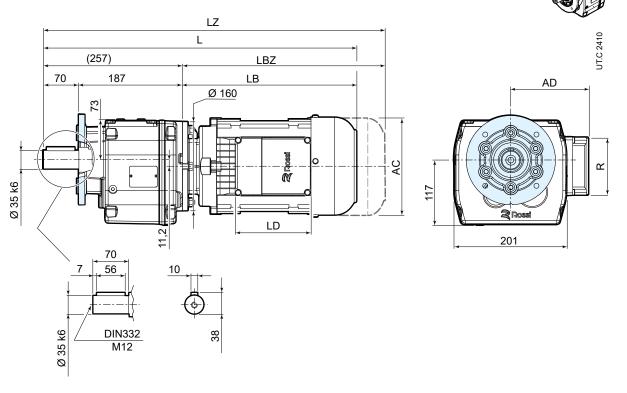
iC 47... FE

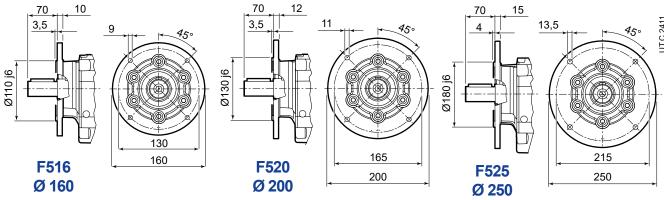


	63	71	80	90S ²⁾	90L	100	112	132S ³⁾	132M	
AC	123	138	156	176	176	194	218	257	257	
AD	95	112	121	141	141	151	163	194	194	
LB	205	231	260	283	313	345	383	439	499	
LBZ	260	293	329	362	392	440	482	547	607	
L 1)	440	466	495	518	548	580	618	674	734	
LZ 1)	495	528	564	597	627	675	717	782	842	
LD	103	103	103	136	136	136	136	190	190	
R	86	86	86	106	106	106	106	148	148	

S. auch Seite 80/81
 Bei Motor HB3-HB3Z 90S 2, HB3-HB3Z 90S 4 Abmessungen wie Motorgröße 90L
 Bei Motor HB3-HB3Z 132SB 2, HB3-HB3Z 132SC 2, HB3-HB3Z 132S 4 Abmessungen wie Motorgröße 132M

iC 57... PE

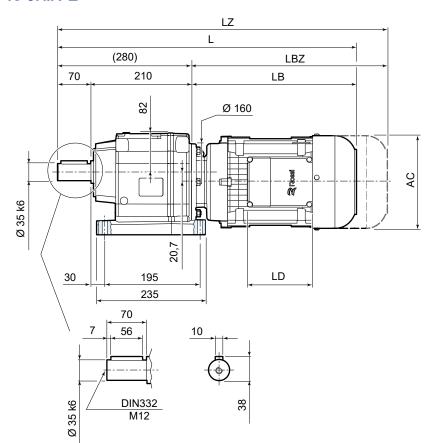

			 	l	 	l	1	 	
	63	71	80	90S ²⁾	90L	100	112 4)	132S 3) 4)	132M ⁴⁾
AC	123	138	156	176	176	194	218	257	257
AD	95	112	121	141	141	151	163	194	194
LB	205	231	260	283	313	345	383	439	499
LBZ	260	293	329	362	392	440	482	547	607
L 1)	462	488	517	540	570	602	640	696	756
LZ 1)	517	550	586	619	649	697	739	804	864
LD	103	103	103	136	136	136	136	190	190
R	86	86	86	106	106	106	106	148	148

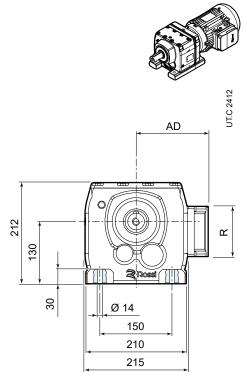

¹⁾ S. auch Seite 80/81

²⁾ Bei Motor HB3-HB3Z 90S 2, HB3-HB3Z 90S 4 Abmessungen wie Motorgröße 90L ³⁾ Bei Motor HB3-HB3Z 132SB 2, HB3-HB3Z 132SC 2, HB3-HB3Z 132S 4 Abmessungen wie Motorgröße 132M

⁴⁾ Der Motor steht über die Montagefläche des Getriebefußes hinaus

iC 57... FE

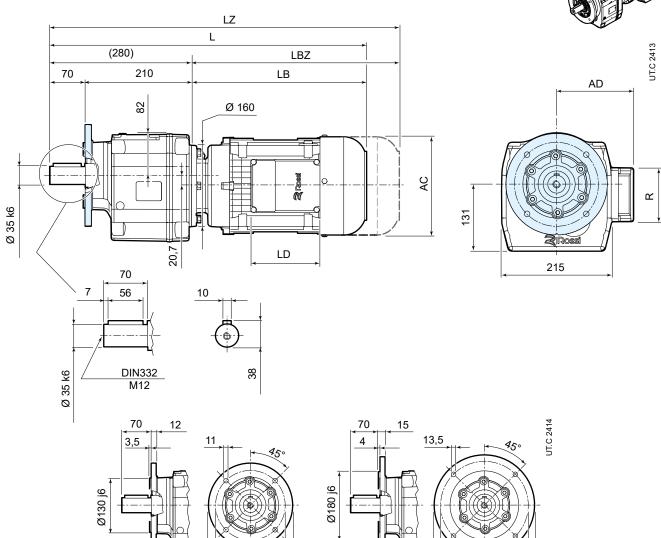




0	63	71	80	90S ²⁾	90L	100	112	132S ³⁾	132M
AC	123	138	156	176	176	194	218	257	257
AD	95	112	121	141	141	151	163	194	194
LB	205	231	260	283	313	345	383	439	499
LBZ	260	293	329	362	392	440	482	547	607
L 1)	462	488	517	540	570	602	640	696	756
LZ 1)	517	550	586	619	649	697	739	804	864
LD	103	103	103	136	136	136	136	190	190
R	86	86	86	106	106	106	106	148	148

S. auch Seite 80/81
 Bei Motor HB3-HB3Z 90S 2, HB3-HB3Z 90S 4 Abmessungen wie Motorgröße 90L
 Bei Motor HB3-HB3Z 132SB 2, HB3-HB3Z 132SC 2, HB3-HB3Z 132S 4 Abmessungen wie Motorgröße 132M

iC 67... PE


O	63	71	80	90S ²⁾	90L	100	112 ⁴⁾	132S 3) 4)	132M ⁴⁾		
AC	123	138	156	176	176	194	218	257	257		
AD	95	112	121	141	141	151	163	194	194		
LB	205	231	260	283	313	345	383	439	499		
LBZ	260	293	329	362	392	440	482	547	607		
L 1)	485	511	540	563	593	625	663	719	779		
LZ 1)	540	573	609	642	672	720	762	827	887		
LD	103	103	103	136	136	136	136	190	190		
R	86	86	86	106	106	106	106	148	148		

¹⁾ S. auch Seite 80/81

²⁾ Bei Motor HB3-HB3Z 90S 2, HB3-HB3Z 90S 4 Abmessungen wie Motorgröße 90L ³⁾ Bei Motor HB3-HB3Z 132SB 2, HB3-HB3Z 132SC 2, HB3-HB3Z 132S 4 Abmessungen wie Motorgröße 132M

⁴⁾ Der Motor steht über die Montagefläche des Getriebefußes hinaus

iC 67... FE

F625

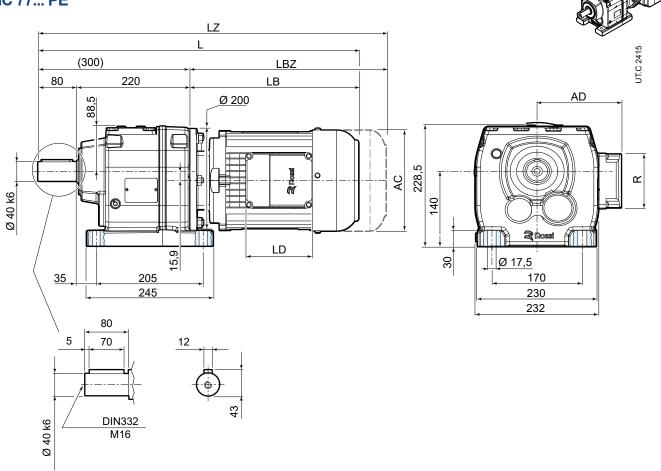
Ø 250

215

250

0	63	71	80	90S ²⁾	90L	100	112	132S ³⁾	132M			
AC	123	138	156	176	176	194	218	257	257			
AD	95	112	121	141	141	151	163	194	194			
LB	205	231	260	283	313	345	383	439	499			
LBZ	260	293	329	362	392	440	482	547	607			
L 1)	485	511	540	563	593	625	663	719	779			
LZ 1)	540	573	609	642	672	720	762	827	887			
LD	103	103	103	136	136	136	136	190	190			
R	86	86	86	106	106	106	106	148	148			

165

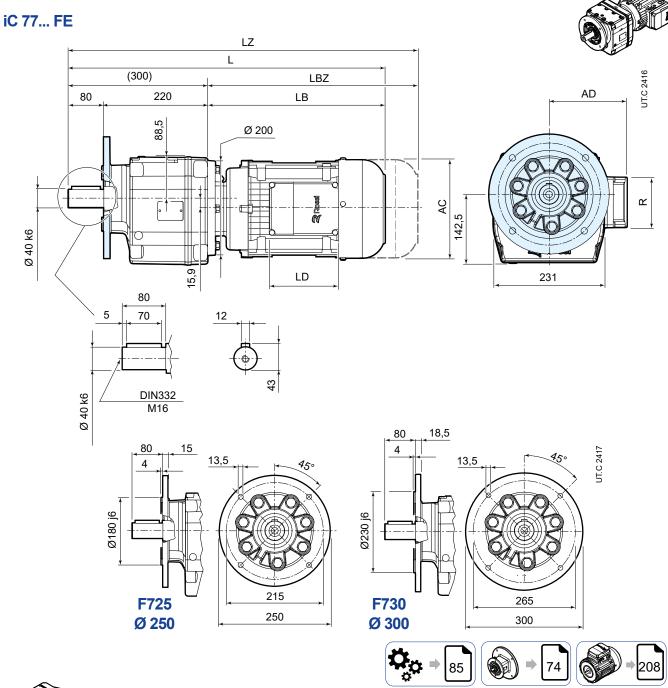

200

F620

Ø 200

S. auch Seite 80/81
 Bei Motor HB3-HB3Z 90S 2, HB3-HB3Z 90S 4 Abmessungen wie Motorgröße 90L
 Bei Motor HB3-HB3Z 132SB 2, HB3-HB3Z 132SC 2, HB3-HB3Z 132S 4 Abmessungen wie Motorgröße 132M

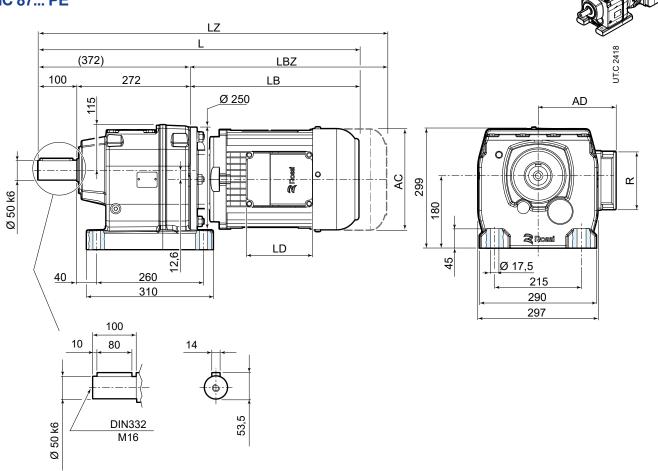
iC 77... PE



	63	71	80	90S ²⁾	90L	100	112	132S 3) 4)	132M ⁴⁾
AC	123	138	156	176	176	194	218	257	257
AD	95	112	121	141	141	151	163	194	194
LB	199	225	254	276	306	339	377	433	493
LBZ	254	287	323	355	385	434	476	541	601
L 1)	499	525	554	576	606	639	677	733	793
LZ 1)	554	587	623	655	685	734	776	841	901
LD	103	103	103	136	136	136	136	190	190
R	86	86	86	106	106	106	106	148	148

¹⁾ S. auch Seite 80/81

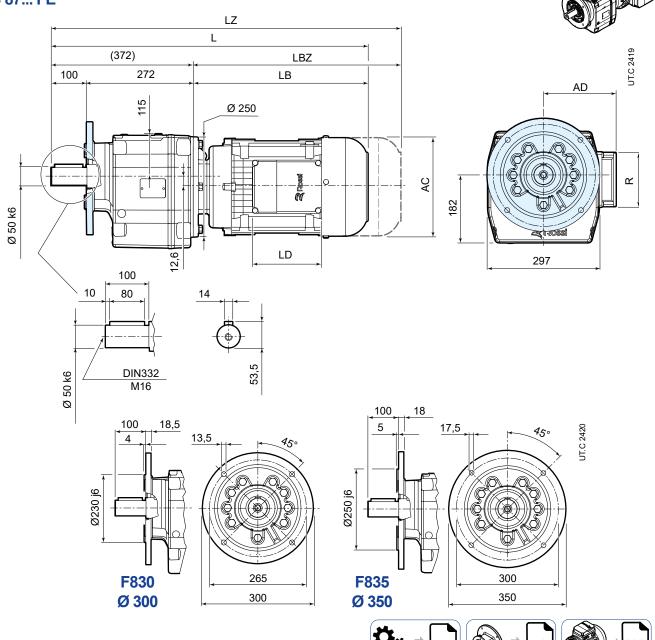
²⁾ Bei Motor HB3-HB3Z 90S 2, HB3-HB3Z 90S 4 Abmessungen wie Motorgröße 90L ³⁾ Bei Motor HB3-HB3Z 132SB 2, HB3-HB3Z 132SC 2, HB3-HB3Z 132S 4 Abmessungen wie Motorgröße 132M


⁴⁾ Der Motor steht über die Montagefläche des Getriebefußes hinaus

O	63	71	80	90S ²⁾	90L	100	112	132S ³⁾	132M
AC	123	138	156	176	176	194	218	257	257
AD	95	112	121	141	141	151	163	194	194
LB	199	225	254	276	306	339	377	433	493
LBZ	254	287	323	355	385	434	476	541	601
L 1)	499	525	554	576	606	639	677	733	793
LZ 1)	554	587	623	655	685	734	776	841	901
LD	103	103	103	136	136	136	136	190	190
R	86	86	86	106	106	106	106	148	148

S. auch Seite 80/81
 Bei Motor HB3-HB3Z 90S 2, HB3-HB3Z 90S 4 Abmessungen wie Motorgröße 90L
 Bei Motor HB3-HB3Z 132SB 2, HB3-HB3Z 132SC 2, HB3-HB3Z 132S 4 Abmessungen wie Motorgröße 132M

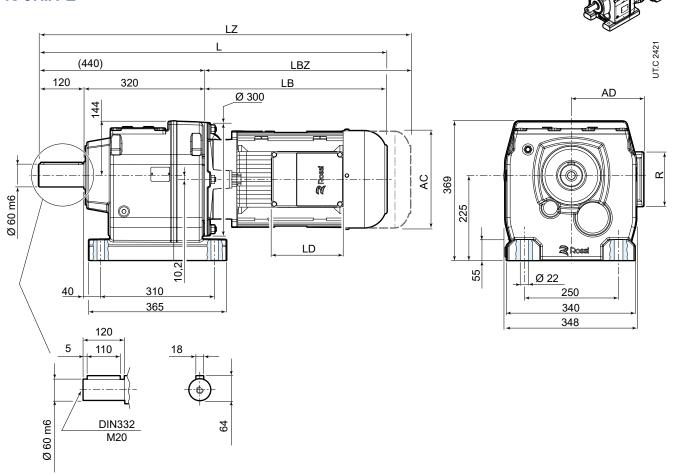
iC 87... PE



	80	90S ²⁾	90L	100	112	132S ³⁾	132M
			* * -				
AC	156	176	176	194	218	257	257
AD	121	141	141	151	163	194	194
LB	249	272	302	334	372	428	488
LBZ	318	351	381	429	471	536	596
L 1)	621	644	674	706	744	800	860
LZ 1)	690	723	753	801	843	908	968
LD	103	136	136	136	136	190	190
R	86	106	106	106	106	148	148

¹⁾ S. auch Seite 80/81

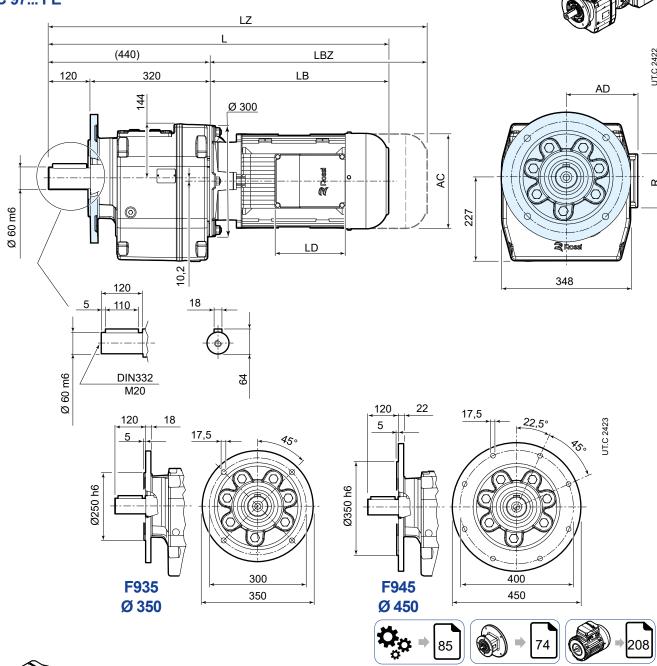
²⁾ Bei Motor HB3-HB3Z 90S 2, HB3-HB3Z 90S 4 Abmessungen wie Motorgröße 90L ³⁾ Bei Motor HB3-HB3Z 132SB 2, HB3-HB3Z 132SC 2, HB3-HB3Z 132S 4 Abmessungen wie Motorgröße 132M



0	80	90S ²⁾	90L	100	112	132S 3)	132M
AC	156	176	176	194	218	257	257
AD	121	141	141	151	163	194	194
LB	249	272	302	334	372	428	488
LBZ	318	351	381	429	471	536	596
L 1)	621	644	674	706	744	800	860
LZ 1)	690	723	753	801	843	908	968
LD	103	136	136	136	136	190	190
R	86	106	106	106	106	148	148

S. auch Seite 80/81
 Bei Motor HB3-HB3Z 90S 2, HB3-HB3Z 90S 4 Abmessungen wie Motorgröße 90L
 Bei Motor HB3-HB3Z 132SB 2, HB3-HB3Z 132SC 2, HB3-HB3Z 132S 4 Abmessungen wie Motorgröße 132M

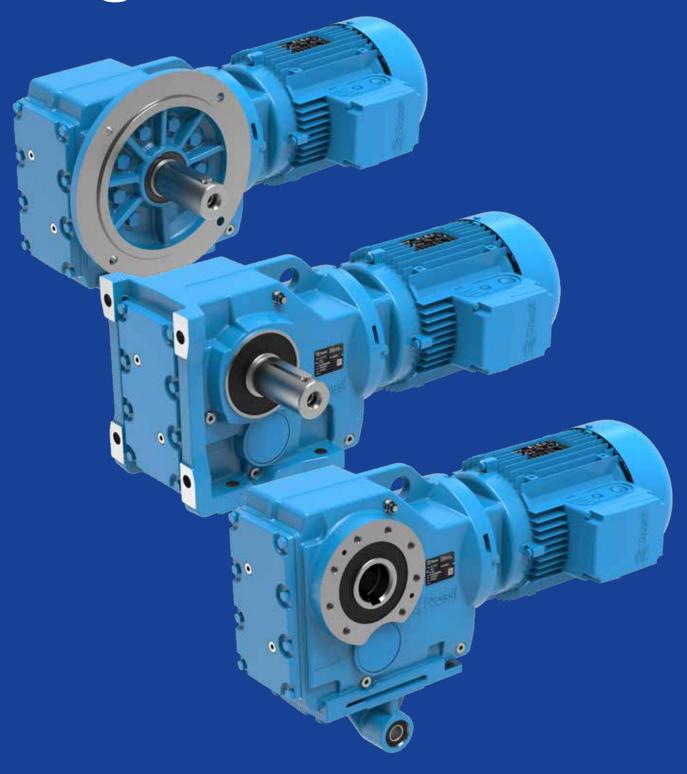
iC 97... PE



	80	90S ²⁾	90L	100	112	132S ³⁾	132M
		000	002	100	112	1020	102111
AC	156	176	176	194	218	257	257
AD	121	141	141	151	163	194	194
LB	242	264	294	327	364	423	483
LBZ	311	343	373	422	463	531	591
L 1)	682	704	734	767	804	863	923
LZ 1)	751	783	813	862	903	971	1031
LD	103	136	136	136	136	190	190
R	86	106	106	106	106	148	148

¹⁾ S. auch Seite 80/81

²⁾ Bei Motor HB3-HB3Z 90S 2, HB3-HB3Z 90S 4 Abmessungen wie Motorgröße 90L ³⁾ Bei Motor HB3-HB3Z 132SB 2, HB3-HB3Z 132SC 2, HB3-HB3Z 132S 4 Abmessungen wie Motorgröße 132M



		I	I	I	I	1	I
	80	90S ²⁾	90L	100	112	132S ³⁾	132M
AC	156	176	176	194	218	257	257
AD	121	141	141	151	163	194	194
LB	242	264	294	327	364	423	483
LBZ	311	343	373	422	463	531	591
L 1)	682	704	734	767	804	863	923
LZ 1)	751	783	813	862	903	971	1031
LD	103	136	136	136	136	190	190
R	86	106	106	106	106	148	148

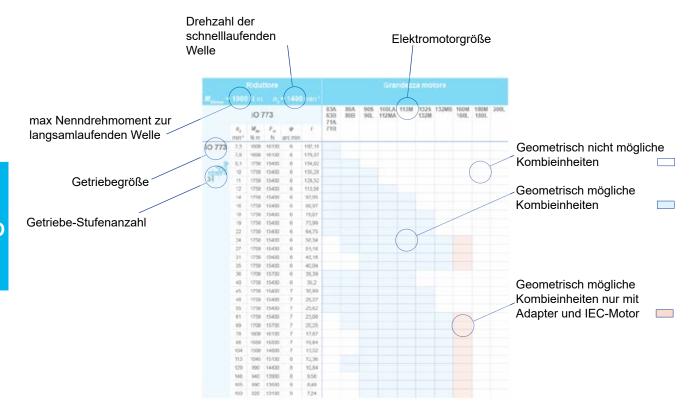
S. auch Seite 80/81
 Bei Motor HB3-HB3Z 90S 2, HB3-HB3Z 90S 4 Abmessungen wie Motorgröße 90L
 Bei Motor HB3-HB3Z 132SB 2, HB3-HB3Z 132SC 2, HB3-HB3Z 132S 4 Abmessungen wie Motorgröße 132M

Auswahltabellen Kegelstirnrad - iO

Sektioninhalt

11.1	Geometrisch mögliche Kombieinheiten	152
	11.1.1 Allgemeines	152
	11.1.2 Zeichenerklärung	152
11.2	Geometrische Kupplungstabellen	153
11.3	Herstellungsprogramm [kW]	160

Mögliche geometrische Kombieinheiten


11.1.1 Allgemeines

Die Tabellen auf den folgenden Seiten zeigen die Möglichkeiten der geometrischen Kupplung mit 4-poligen HB-Motoren in Abhängigkeit vom Zahnradgetriebe und der Getriebeübersetzung.

Die Drehzahlen der langsamlaufenden Welle n_2 sind ebenfalls angegeben, berechnet under der Annahme einer Nennantriebsdrehzahl von n_1 = 1400 min⁻¹. Die Werte des Nenndrehmoments an der langsamlaufenden Welle M_{N2} und der zulässigen Radialbelastung F_{r2} , die in der Mittellinie wirkt, beziehen sich ebenfalls auf diese Drehzahl.

Zum Zeitpunkt der Auswahl müssen die tatsächlichen Betriebsbedingungen in Bezug auf die tatsächliche Leistung des Motors, wie im Kapitel 6 angegeben, bewertet werden.

11.1.2 Zeichenerklärung

wobei

- n₂ Drehzahl der langsamlaufenden Welle
- M_{N2} Nenndrehmoment der langsamlaufenden Welle
- F_{1/2} zulässige Radialbelastung bei der Mittellinie der langsamlaufenden Welle (bei der Drehzahl n₂ und dem Drehmoment M_{N2} in der Tabelle angegeben - gültig nur bei fußbefestigtem Getriebemotor)
- φ reduziertes Winkelspiel, bezogen auf die langsamlaufende Welle (Toleranz \pm 2 arc min wenn der Wert nicht angegeben ist, ist die Option des reduzierten Winkelspiels nicht verfügbar)
- i Übersetzung

⋜ Rossi

Geometrische Kupplungstabellen

		Getri	ebe							Motor	größe				
M _{N2max} =	= 224	N m	n ₁ :	= 1400	min ⁻¹										
		iO 3				63A 63B 71A	80A 80B	90S 90L	100LA 112MA	112M	132S 132M	132MB	160M 160L	180M 180L	200L
	n ₂	M _{N2}	F _{r2}	φ	i	71B									
	min ⁻¹	N m	N	arc min											
iO 373	13	224	5640	7	106,38										
_	14	224	5640	7	97,81										
	17	224	5640	7	83,69										
3	19	224	5520	7	72,54										
J	21	224	5360	7	67,8										
	24	224	5020	7	58,6										
	28	224	4660	7	49,79										
	31	224	4420	7	44,46										
	37	224	4100	7	37,97										
	39	224	3970 3650	8	35,57										
	47	224 224	3580	8	29,96										
	49 56	224	3330		28,83										
	60	315	3260	9	24,99 23,36										
	69	205	3110	9	20,19										
	82	200	2900	9	17,15										
	91	195	2780	9	15,31										
	107	185	2650	9	13,08										
	115	180	2600	12	12,14										
	133	180	2410	13	10,49										
	157	180	2200	13	8,91										
	176	175	2110	13	7,96										
	206	170	1980	13	6,8										
	220	160	1950	13	6,37										
	261	150	1810	14	5,36										

		Getr	iebe						ľ	Motor	größe				
M _{N2max}	= 450	Nm	n,	= 1400) min ⁻¹										
102max			473			63A 63B 71A	80A 80B	90S 90L	100LA 112MA	112M	132S 132M	132MB	160M 160L	180M 180L	200L
	n ₂ min ⁻¹	M _{N2} N m	F _{r2}	φ arc min	i	71B									
iO 473	11	450	5920	7	131,87 ⁽¹⁾										
10 47 3	12	450	5920	7	121,48 (1)										
, 🕞	13	450	5920	7	104,37										
	15	450	5920	7	90,86										
3	16	450	5920	7	85,12 ⁽¹⁾										
	19	450	5920	7	75,2 ⁽¹⁾										
	20	450	5920	7	69,84										
	22	450	5920	7	63,3 (1)										
	25	450	5920	7	56,83										
	29	450	5920	7	48,95 (1)										
	30	450	5920	7	46,03 (1)										
	35	450	5920	7	39,61										
	40	450	5920	7	35,39										
	45	450	5700	8	31,3										
	48	450	5520	8	29,32										
	54	450	5170	8	25,91										
	58	450	4970	8	24,06										
	64	450	4710	8	21,81										
	72	450	4440	8	19,58										
	83	425	4220	8	16,86										
	88	425	4080	8	15,86										
	103	400	3890	8	13,65										
	115	385	3720	9	12,19										
	119	280	4060	11	11,77										
	133	280	3830	11	10,56										
	154	280	3540	11	9,1										
	164	270	3500	11	8,56										
	190	250	3380	11	7,36										
	213	240	3270	12	6,58										

230 3140

5,81

 $^{^{} ext{(1)}}$ Endliche Übersetzung i

		Getri	ebe						N	Motor	größe				
M _{N2max} =	= 670	N m	n ₁ :	= 1400	min ⁻¹										
		iO 5				63A 63B 71A	80A 80B	90S 90L	100LA 112MA	112M	132S 132M	132MB	160M 160L	180M 180L	200L
	n ₂ min ⁻¹	M _{N2} N m	F _{r2}	φ arc min	i	71B									
iO 573	9,6	670	7630	6	145,14 ⁽¹⁾										
10 010	11	670	7630	6	123,85										
	13	670	7630	6	108,29										
	14	670	7630	6	102,88 (1)										
3	16	670	7630	6	90,26 (1)										
	18	670	7630	6	76,56 ⁽¹⁾										
	20	670	7630	6	69,12										
	23	670	7630	6	60,81 (1)										
	24	670	7630	6	57,42 ⁽¹⁾										
	29	670	7630	6	48,89										
	32	670	7630	7	44,43										
	36	670	7630	7	38,49										
	39	670	7630	7	35,7										
	46	670	7300	7	30,28										
	51	670	6930	7	27,34										
	58	670	6480	7	24,05										
	62	670	6280	7	22,71										
	72	650	5910	7	19,34										
	80	615	5740	8	17,57										
	92	600	5430	8	15,22										
	106	580	5190	8	13,25										
	117	460	5150	10	11,92										
	124	460	4990	10	11,26										
	146	450	4650	10	9,59										
	161	430	4520	10	8,71										
	185	400	4360	11	7,55										
	213	375	4180	11	6,57										

⁽¹⁾ Endliche Übersetzung i

		Getri	iebe						ı	Motor	größe	,			
M _{N2max} =	= 925	N m	n ₁ =	= 1400	min ⁻¹										
		iO 6	673			63A 63B 71A	80A 80B	90S 90L	100LA 112MA	112M	132S 132M	132MB	160M 160L	180M 180L	200L
	n ₂ min ⁻¹	M _{N2} N m	F _{r2}	φ arc min	i	71B									
iO 673	9,7	925	10300	7	144,79 ⁽¹⁾										
10 010	11	915	10300	7	123,54										
, 🕒	13	910	10300	7	108,03										
	14	910	10300	7	102,62										
3	16	905	10300	7	90,04										
	18	900	10300	7	76,37										
	20	900	10300	7	68,95										
	23	895	10300	7	60,66										
	24	895	10300	7	57,28										
	29	890	10300	7	48,77										
	32	885	10300	7	44,32										
	36	880	10500	7	38,39										
	39	880	10300	8	35,62										
	46	875	10300	8	30,22										
	51	875	10300	8	27,28										
	58	870	10500	8	24										
	62	870	10700	8	22,66										
	73	850	10800	8	19,3										
	80	820	11000	8	17,54										
	92	765	11300	8	15,19										
	106	670	11500	8	13,22										
	112	530	12300	9	12,48										
	132	500	11800	9	10,63										
	145	480	11500	10	9,66										
	167	440	11100	10	8,37										
	192	420	10700	10	7,28										

		Getri	iebe						ľ	Motor	größe	,			
M _{N2max} =	1750	N m	n ₁	= 1400	min ⁻¹										
		iO 7	773			63A 63B 71A	80A 80B	90S 90L	100LA 112MA	112M	132S 132M	132MB	160M 160L	180M 180L	200L
	n ₂ min ⁻¹	M _{N2} N m	F _{r2}	φ arc min	i	71B									
iO 773	7,3	1600	16100	6	192,18										
	7,8	1600	16100	6	179,37										
	9,1	1750	15400	6	154,02										
	10	1750	15400	6	135,28										
3	11	1750	15400	6	128,52										
	12	1750	15400	6	113,56										
	14	1750	15400	6	97,05										
	16	1750	15400	6	88,97										
	18	1750	15400	6	78,07										
	19	1750	15400	6	73,99										
	22	1750	15400	6	64,75										
	24	1750	15400	6	58,34										
	27	1750	15400	6	51,18										
	31	1750	15400	6	45,16										
	35	1750	15400	6	40,04										
	36	1700	15700	6	38,39										
	40	1750	15400	6	35,2										
	45	1750	15400	7	30,89										
	48	1750	15400	7	29,27										
	55	1750	15400	7	25,62										
	61	1750	15400	7	23,08										
	69	1700	15700	7	20,25										
	78	1600	16100	7	17,87										
	88	1550	15500	7	15,84										
	104	1500	14800	7	13,52										
	113	1045	15100	8	12,36										
	129	990	14400	8	10,84										
	146	940	13900	8	9,56										
	165	890	13500	9	8,48										
	193	820	13100	9	7,24										

		Getr	iebe							Motor	größe				
M _{N2max} =	3000	Nm	n,	= 1400) min ⁻¹										
NZIIIAX		iO 8				63A 63B 71A	80A 80B	90S 90L	100LA 112MA	112M	132S 132M	132MB	160M 160L	180M 180L	200L
	n ₂ min ⁻¹	M _{N2} N m	F _{r2}	φ arc min	i	71B									
iO 873	7,1	3000	27300	6	197,37										
10 010	8	3000	27300	6	174,19										
	8,5	3000	27300	6	164,34 ⁽¹⁾										
	9,5	3000	27300	6	147,32 ⁽¹⁾										
3	11	3000	27300	6	126,91 ⁽¹⁾										
	12	3000	27300	6	115,82										
	14	3000	27300	6	102,71 (1)										
	16	3000	27300	6	86,34										
	18	3000	27300	6	79,34										
	20	3000	27300	6	70,46										
	22	3000	26200	6	63 (1)										
	25	3000	25000	6	56,64										
	28	3000	23500	6	49,16										
	32	2900	22800	6	44,02										
	38	2800	21400	6	36,52 (1)										
	45	3000	19200	7	31,39										
	50	2900	18500	7	27,88										
	56	2800	18000	7	24,92										
	62	2570	17900	7	22,41										
	72	2570	16800	7	19,45										
	80	2430	16300	7	17,42										
	88	1970	16000	7	16										
	97	2360	15300	7	14,45										
	111	2240	14800	7	12,56										
	125	1700	14900	7	11,17										
	140	1700	14200	7	10										
	169	1550	13500	7	8,29										

194

1450 13200

7,21

 $^{^{(1)}}$ Endliche Übersetzung i

		Getri	iebe						ľ	Motor	größe				
M _{N2max} =	4870	N m	n ₁	= 1400) min ⁻¹										
		iO 9	73			63A 63B 71A	80A 80B	90S 90L	100LA 112MA	112M	132S 132M	132MB	160M 160L	180M 180L	200L
	n ₂ min ⁻¹	M _{N2} N m	F _{r2}	φ arc min	i	71B									
iO 973	8	4870	40000		176,05 ⁽¹⁾										
10 973	9,1	4870	40000	7	153,21 (1)										
. 🕞	10	4870	40000	7	140,28										
	11	4870	40000	7	123,93 (1)										
3	13	4870	40000	7	105,13										
	14	4870	40000	7	96,8										
	16	4870	38800	7	86,52										
	18	4870	37100	7	77,89 ⁽¹⁾										
	20	4870	35600	7	70,54										
	22	4870	33800	7	62,55										
	25	4870	32300	7	56,55										
	29	4870	30000	7	47,93 ⁽¹⁾										
	33	4870	28300	7	41,87										
	37	4870	27100	8	38,3										
	41	4870	25700	8	34,23										
	45	4870	24500	8	30,82										
	50	4870	23300	8	27,91										
	57	4870	22000	8	24,75										
	63	4870	20900	8	22,37										
	74	4870	19100	8	18,96										
	85	4870	17800	8	16,56										
	101	4580	16100	8	13,85										
	117	4270	16200	8	11,99										
	134	3130	16400	10	10,41										
	161	2880	15800	10	8,71										

⁽¹⁾ Endliche Übersetzung i

Herstellungsprogramm [kW]

$P_1 = 0,1$	2 kW				~	2									£ k	g		p.
n ₂	M ₂	i	F _{r2}	fs	. 3	ic.				(Fül	⊾ 3en		nsch	
min ⁻¹	N m		N		4		3			ţ	9			НВ	HBZ	НВ	HBZ	
6,3	182	144,79 (1)	13000	5,1	iO	673	-	HB2	63	В	6	B16B		34	36	40	41	195
													3					
6,3	183	145,14 (1)	9660	3,7	iO	573	-	HB2	63	В	6	B16B	4	30	32	37	38	192
7,3	156	123,85	9740	4,3														
8,4	136	108,29	9800	4,9									3					
8,8	130	102,88 (1)	9820	5,2														
10	114	90,26 (1)	9870	5,9														
12	96	76,56 (1)	9920	6,9														
9,4	121	145,14 (1)	9870	5,5	iO	573	-	HB2	63	Α	4	B16B		29	31	36	38	192
11	104	123,85	9910	6,5														
13	91	108,29	9950	7,4									3					
13	86	102,88 (1)	9960	7,8														
15	76	90,26 (1)	9990	8,9														
6,9	166	131,87 (1)	7900	2,7	iO	473	-	HB2	63	В	6	B16B		23	25	25	27	189
7,5	153	121,48 ⁽¹⁾	7960	2,9														
8,7	131	104,37	8050	3,4									3 '					
10	110	131,87	8140	4,1	iO	473	-	HB2	63	Α	4	B16B	. 41	22	24	25	27	189
11	102	121,48 ⁽¹⁾	8160	4,4									3					
8,6	134	106,38	5750	1,65	iO	373	_	HB2	63	В	6	B12B	, 🕞	19	20	21	22	186
9,3	123	97,81	5860	1,8														
11	105	83,69	6030	2,1									3					
13	91	72,54	6160	2,5														
13	89	106,38	6220	2,5	iO	373	_	HB2	63	Α	4	B12B		18	20	20	22	186
14	82	97,81	6290	2,7														
16	70	83,69	6400	3,2									3					
19	61	72,54	6480	3,7														
20	57	67,8	6520	3,9														

$P_{_{1}} = 0,1$	8 kW																	
6,3	274	144,79 (1)	13000	3,4	iO	673	-	HB2	71	Α	6	B16B	4	36	38	41	44	195
7,4	233	123,54	13000	4									3					
8,4	204	108,03	13000	4,5									3 † '					
8,9	194	102,62	13000	4,8														
9,4	183	144,79 (1)	13000	5,1	iO	673	-	HB2	63	В	4	B16B	. +1	34	36	40	41	195
11	156	123,54	13000	5,9									3					
13	137	108,03	13000	6,7									ĭ					

 $^{^{(1)}}$ Endliche Übersetzung i

$P_1 = 0,1$	8 kW														5	3		
n ₂	M ₂	i	F _{r2}	fs					,	Ç					Sen_		nsch	p.
min ⁻¹	N m		N								.4			НВ	HBZ	НВ	HBZ	
6,3	274	145,14 (1)	9380	2,4	iO	573	-	HB2	71	Α	6	B16B	. 4	31	34	38	41	192
7,3	234	123,85	9520	2,9									3					
8,4	205	108,29	9620	3,3									3					
8,8	194	102,88 (1)	9650	3,4														
10	171	90,26 (1)	9720	3,9														
9,4	183	145,14 (1)	9690	3,7	iO	573	-	HB2	63	В	4	B16B		30	32	37	38	192
11	157	123,85	9770	4,3									3					
13	137	108,29	9820	4,9									3					
13	130	102,88 (1)	9840	5,2														
15	114	90,26 (1)	9890	5,9														
18	97	76,56 ⁽¹⁾	9930	6,9														
6,9	249	131,87 (1)	7480	1,8	iO	473	-	HB2	71	Α	6	B16B		24	27	27	30	189
7,5	229	121,48 (1)	7600	1,95									3					
8,7	197	104,37	7790	2,3									3					
10	172	90,86	7920	2,6														
11	161	85,12 (1)	7960	2,8														
10	167	131,87 (1)	7940	2,7	iO	473	-	HB2	63	В	4	B16B		23	25	25	27	189
11	154	121,48 (1)	8000	2,9									3					
13	132	104,37	8080	3,4														
15	115	90,86	8130	3,9														
16	108	85,12 ⁽¹⁾	8150	4,2														
8,6	201	106,38	5210	1,1	iO	373	-	HB2	71	Α	6	B12B		20	23	22	25	186
9,3	185	97,81	5360	1,2									3					
11	158	83,69	5600	1,4														
13	137	72,54	5790	1,65														
13	134	106,38	5820	1,65	iO	373	-	HB2	63	В	4	B12B		19	20	21	22	186
14	124	97,81	5920	1,8									3					
16	106	83,69	6080	2,1														
19	92	72,54	6200	2,4														
20	86	67,8	6260	2,6														
23	74	58,6	6210	3														
27	63	49,79	5950	3,6														
31	56	44,46	5770	4														
36	48	37,97	5520	4,7														

$P_1 = 0,2$.5 kW																	
4,7	510	192,18	19700	3,1	iO	773	-	HB2	71	В	6	B20B		55	58	63	66	198
5,0	476	179,37	19800	3,4									3					
5,8	409	154,02	19900	4,3									Υ					
6,7	359	135,28	19900	4,9														
6,2	384	144,79 (1)	12900	2,4	iO	673	-	HB2	71	В	6	B16B		37	39	42	45	195
7,3	328	123,54	13000	2,8									3					
8,3	287	108,03	13000	3,2									Ţ					
8,8	272	102,62	13000	3,4														

⁽¹⁾ Endliche Übersetzung i

$P_1 = 0,2$	25 kW				~	%)						£ k	g		p.
n ₂	M ₂	i	F _{r2}	fs		ia				(Fü	⊾ ßen		nsch	
min ⁻¹	N m		N				ð			ţ				НВ	HBZ	НВ	HBZ	
9,7	247	144,79 (1)	13000	3,7	iO	673	_	HB2	71	Α	4	B16B	, 🕒	35	38	41	43	195
11	211	123,54	13000	4,4														
13	184	108,03	13000	4,9									3					
14	175	102,62	13000	5,2														
6,2	385	145,14 (1)	8970	1,75	iO	573	_	HB2	71	В	6	B16B	. +1	32	35	39	41	
7,3	329	123,85	9200	2									3					192
8,3	287	108,29	9350	2,3									O 1					
8,7	273	102,88 (1)	9400	2,5														
10,0	239	90,26 (1)	9520	2,8														
12	203	76,56 (1)	9630	3,3														
9,6	248	145,14 (1)	9480	2,7	iO	573	-	HB2	71	Α	4	B16B		31	34	38	40	192
11	211	123,85	9600	3,2									3					
13	185	108,29	9680	3,6									'					
14	175	102,88 (1)	9710	3,8														
16	154	90,26 (1)	9770	4,4														
18	131	76,56 (1)	9840	5,1														
6,8	350	131,87 (1)	6620	1,3	iO	473	-	HB2	71	В	6	B16B		25	28	28	30	189
7,4	322	121,48 (1)	6900	1,4									3					
8,6	277	104,37	7290	1,65														
9,9	241	90,86	7550	1,85														
11	226	85,12 ⁽¹⁾ 131,87 ⁽¹⁾	7640	2	:0	472		ЦΒΩ	74	Α.	_	B16B	. =	24	27	27	20	189
11 12	225 207	121,48 (1)	7630	2 2,2	iO	473	-	HB2	/1	А	4	ВТОВ		24	27	27	29	189
13	178	104,37	7740 7890	2,2									3					
15	155	90,86	7990	2,9														
16	145	85,12 ⁽¹⁾	8020	3,1														
11	222	83,69	5040	1	iO	373	_	HB2	71	В	6	B12B		21	24	23	26	186
12	192	72,54	5310	1,15														
13	180	67,8	5420	1,25									3					
15	155	58,6	5640	1,45														
18	132	49,79	5850	1,7														
13	181	106,38	5380	1,25	iO	373	-	HB2	71	Α	4	B12B	. 48	20	22	22	24	186
14	167	97,81	5520	1,35									3					
17	143	83,69	5740	1,55									J ,					
19	124	72,54	5910	1,8														
21	116	67,8	5980	1,95														
24	100	58,6	5920	2,2														
28	85	49,79	5700	2,6														
31	76	44,46	5540	3														
37	65	37,97	5320	3,5														
39	61	35,57	5230	3,7														
47	51	29,96	5000	4,4														
49	49	28,83	4940	4,6														

 $^{^{(1)}}$ Endliche Übersetzung i

2635-23.03-1

$P_1 = 0.3$	7 kW				~										£	g		p.
n ₂	M ₂	i	F _{r2}	fs						(For	3en	ع Flar	nsch	ب
	_	-			L .		3			}							HBZ	
min ⁻¹	N m		N								T.	9						
4,7	750	197,37	28900	4	iO	873	-	HB2	80	Α	6	B25C		103	107	108	112	201
5,3	662	174,19	28900	4,5									3					
6,0	585	154,02	19500	3	iO	773	_	UD2	90		6	B20C		56	60	64	68	198
6,9	514	135,28	19700	3,4	10	113	-	ПВ2	00	A	U	B20C		30	00	04	00	190
7,2	488	128,52	19700	3,6									3					
8,2	431	113,56	19800	4,1														
7,3	485	192,18	19700	3,3	iO	773	_	HB2	71	В	4	B20B		55	58	63	65	198
7,8	453	179,37	19800	3,5									3					
9,1	389	154,02	19900	4,5									3					
7,5	469	123,54	12600	1,95	iO	673	-	HB2	80	Α	6	B16C		38	42	43	47	195
8,6	410	108,03	12800	2,3									3					
9,1	390	102,62	12900	2,4														
10	342	90,04	13000	2,7														
9,7	365	144,79 (1)	12900	2,5	iO	673	-	HB2	71	В	4	B16B		36	39	42	44	195
11	312	123,54	13000	2,9									3					
13	273	108,03	13000	3,3														
16	227	90,04	13000	4														
18	193	76,37	13000	4,7														
7,5	471	123,85	8570	1,4	iO	573	-	HB2	80	Α	6	B16C		33	37	40	44	192
8,6	411	108,29	8840	1,65									3					
9,0	391	102,88 (1)	8930	1,7														
10	343	90,26 (1)	9130	1,95														
12	291	76,56 ⁽¹⁾	9320	2,3														
13	263	69,12	9430	2,6	:0	F70		LIDO	74	_	_	DACD	. 🕒	20	25	20	44	400
9,6	366	145,14 (1)	9040	1,85	iO	573	-	HB2	71	В	4	B16B		32	35	39	41	192
11 13	313 273	123,85 108,29	9250 9390	2,1 2,5									3					
14	260	103,29	9440	2,6														
16	228	90,26 (1)	9550	2,9														
18	193	76,56 ⁽¹⁾	9660	3,5														
20	174	69,12	9720	3,8														
8,9	397	104,37	6000	1,15	iO	473	_	HB2	80	Α	6	B16C	4	26	30	29	33	189
10	345	90,86	6630	1,3									2					
11	323	85,12 ⁽¹⁾	6860	1,4									3					
12	286	75,2 (1)	7200	1,55														
11	333	131,87 (1)	6780	1,35	iO	473	-	HB2	71	В	4	B16B		25	28	27	30	189
12	307	121,48 (1)	7030	1,45									3					
13	263	104,37	7380	1,7														
15	229	90,86	7610	1,95														
16	215	85,12 ⁽¹⁾	7700	2,1														
19	190	75,2 (1)	7840	2,4														
20	176	69,84	7900	2,6														
22	160	63,3 (1)	7970	2,8														

 $^{^{(1)}}$ Endliche Übersetzung i

$P_1 = 0.3$	37 kW								k,	<u>1</u>		p.
$n_{_2}$	M ₂	i	F _{r2}	fs				Füß	Ben	Flan		
min ⁻¹	N m		N					НВ	HBZ	НВ	HBZ	
14	247	97,81	3550	0,9	iO 373 – HB2 7	1 B 4 B12B		21	23	23	25	186
17	211	83,69	5130	1,05			3					
19	183	72,54	5380	1,2			3					
21	171	67,8	5490	1,3								
24	148	58,6	5480	1,5								
28	126	49,79	5320	1,8								
31	112	44,46	5200	2								
37	96	37,97	5030	2,3								
39	90	35,57	4960	2,5								
47	76	29,96	4770	3								
49	73	28,83	4720	3,1								
56	63	24,99	4560	3,6								
60	59	23,36	4480	3,7								
69	51	20,19	4320	4								
82	43	17,15	4130	4,6								

$P_{_{1}} = 0,5$	5 kW																	
4,7	1127	197,37	28700	2,7	iO	873	-	HB2	80	В	6	B25C		104	108	109	113	201
5,3	994	174,19	28800	3									3					
5,6	938	164,34 (1)	28800	3,2									T T					
6,2	841	147,32 (1)	28900	3,6														
6,0	879	154,02	18900	2	iO	773	-	HB2	80	В	6	B20C		58	62	65	69	198
6,8	772	135,28	19200	2,3									3					
7,2	734	128,52	19300	2,4									91					
8,1	648	113,56	19500	2,7														
9,1	576	154,02	19600	3	iO	773	-	HB2	80	Α	4	B20C		56	60	63	67	198
10	506	135,28	19700	3,5									3					
11	480	128,52	19700	3,6									O T					
12	425	113,56	19800	4,1														
14	363	97,05	19900	4,8		,												
7,4	705	123,54	11500	1,3	iO	673	-	HB2	80	В	6	B16C		39	43	45	49	195
8,5	617	108,03	12000	1,5									3					
9,0	586	102,62	12100	1,6									-					
10	514	90,04	12500	1,8														
12	436	76,37	12800	2,1														
11	462	123,54	12600	2	iO	673	-	HB2	80	Α	4	B16C		37	41	43	47	195
13	404	108,03	12800	2,3									3					
16	337	90,04	13000	2,7									J T					
18	286	76,37	13000	3,2														

 $^{^{(1)}}$ Endliche Übersetzung i

$P_1 = 0.5$	55 kW														£	<u> </u>		
		_	_	_	F											g		p.
n ₂	M ₂	i	\mathbf{F}_{r2}	fs						8					3en	Flar		
min ⁻¹	N m		N		, a					(1			НВ	HBZ	НВ	HBZ	
8,5	618	108,29	7720	1,1	iO	573	-	HB2	80	В	6	B16C		35	39	42	45	192
8,9	587	102,88 (1)	7960	1,15									3					
10	515	90,26 (1)	8460	1,3									•					
12	437	76,56 ⁽¹⁾	8810	1,55														
13	395	69,12	8980	1,7														
15	347	60,81 ⁽¹⁾	9170	1,95														
16	328	57,42 ⁽¹⁾	9240	2														
11	463	123,85	8640	1,45	iO	573	-	HB2	80	Α	4	B16C		33	37	40	43	192
13	405	108,29	8900	1,65									3					
14	385	102,88 (1)	8980	1,75									, i					
16	337	90,26 (1)	9170	2														
18	286	76,56 ⁽¹⁾	9360	2,3														
20	258	69,12	9460	2,6														
23	227	60,81 (1)	9560	2,9														
24	215	57,42 ⁽¹⁾	9600	3,1														
13	390	104,37	6170	1,15	iO	473	-	HB2	80	Α	4	B16C		26	30	28	32	189
15	340	90,86	6750	1,3									3					
17	318	85,12 ⁽¹⁾	6950	1,4									'					
19	281	75,2 ⁽¹⁾	7270	1,6														
20	261	69,84	7420	1,7														
22	237	63,3 (1)	7580	1,9														
25	212	56,83	7730	2,1														
29	183	48,95 ⁽¹⁾	7880	2,5														
31	172	46,03 (1)	7930	2,6														
24	219	58,6	4830	1	iO	373	-	HB2	80	Α	4	B12C		22	26	24	28	186
28	186	49,79	4760	1,2									3					
32	166	44,46	4700	1,35									, i					
37	142	37,97	4600	1,6														
40	133	35,57	4560	1,7														
47	112	29,96	4420	2														
49	108	28,83	4390	2,1														
56	93	24,99	4270	2,4														
60	87	23,36	4210	2,5														
70	75	20,19	4080	2,7														
82	64	17,15	3930	3,1														
92	57	15,31	3830	3,4														
107	49	13,08	3680	3,8														
116	45	12,14	3610	4														
134	39	10,49	3470	4,6														

⁽¹⁾ Endliche Übersetzung i

$P_1 = 0.7$	75 kW)						£	3		p.
	M ₂	i	E	fs)					For	Sen	g	b	۳.
n ₂	_	,	F _{r2}	13						β.							nsch HBZ	
min ⁻¹	N m		N							_			ı	110	1102	110	IIDZ	
5,3	1342	174,19	28600	2,2	iO	873	-	НВ3	90	S	6	B25D		110	114	115	119	201
5,7	1266	164,34 (1)	28700	2,4									3					
6,3	1135	147,32 (1)	28700	2,6									'					
7,3	977	126,91 (1)	28800	3,1														
7,1	1003	197,37	28800	3	iO	873	-	HB3	80	В	4	B25C		107	111	112	116	201
8,1	885	174,19	28800	3,4									3					
8,6	835	164,34 (1)	28900	3,6														
9,6	748	147,32 (1)	28900	4	:0	770		LIDO		_	_	DOOD		0.4	00	74	75	400
6,9	1042 990	135,28	18300	1,7	iO	773	-	HB3	90	5	ь	B20D		64	68	71	75	198
7,2		128,52	18400	1,75 2									3					
8,2	875 747	113,56 97,05	18800 19200															
9,6 10	685	88,97	19200	2,3 2,6														
9,2	782	154,02	19100	2,2	iO	773	_	НВ3	80	В	1	B20C	. 🕒	60	64	68	72	198
10	687	135,28	19300	2,5	10	773	_	1100	00		7	B200		00	04	00	12	190
11	653	128,52	19400	2,7									3					
12	577	113,56	19600	3														
15	493	97,05	19700	3,5														
11	628	123,54	11800	1,45	iO	673	_	НВ3	80	В	4	B16C	, 🕒	42	46	47	51	195
13	549	108,03	12200	1,65														
16	457	90,04	12600	2									3					
18	388	76,37	12900	2,3														
20	350	68,95	13000	2,6														
23	308	60,66	13000	2,9														
25	291	57,28	13000	3,1														
11	629	123,85	7500	1,05	iO	573	-	НВ3	80	В	4	B16C		37	41	44	48	192
13	550	108,29	8120	1,2									3					
14	523	102,88 (1)	8330	1,3														
16	459	90,26 (1)	8660	1,45														
18	389	76,56 (1)	8960	1,7														
20	351	69,12	9120	1,9														
23	309	60,81 (1)	9280	2,2														
25	292	57,42 (1)	9340	2,3														
29	248	48,89	9490	2,7														
32	226	44,43	9560	3	:0	472		LIDS	90	В	4	D46C	. 🖶	20	2.4	22	27	189
19 20	382 355	75,2 ⁽¹⁾ 69,84	6270 6590	1,2 1,25	iO	473	-	нвз	80	В	4	B16C		30	34	33	37	109
22	322	63,3 (1)	6920	1,25									3					
25	289	56,83	7210	1,55														
29	249	48,95 ⁽¹⁾	7500	1,33														
31	234	46,03 (1)	7600	1,9														
36	201	39,61	7790	2,2														
40	180	35,39	7690	2,5														
45	159	31,3	7480	2,8														
	i	. '		1	1								ı		ı			

 $^{^{} ext{(1)}}$ Endliche Übersetzung i

$P_1 = 0$	75 kW								<i>S</i> k	<u>}</u>	p.	1
n ₂	M ₂	i	F _{r2}	fs				Füſ	3en	 Flan	sch	,
min ⁻¹	N m		N					НВ	HBZ	НВ	HBZ	
32	226	44,46	4170	1	iO 373 – HB3	80 B 4 B12C		26	30	28	32 186	ô
37	193	37,97	4140	1,15			3					
40	181	35,57	4130	1,25								
47	152	29,96	4060	1,45								
49	146	28,83	4040	1,55								
56	127	24,99	3970	1,75								
60	119	23,36	3930	1,85								
70	103	20,19	3840	2								
82	87	17,15	3720	2,3								
92	78	15,31	3640	2,5								
108	66	13,08	3520	2,8								
116	62	12,14	3460	2,9								
134	53	10,49	3340	3,4								
158	45	8,91	3210	4								
177	40	7,96	3120	4,3								

$P_1 = 1,1$	kW																	
5,3	1989	176,05 ⁽¹⁾	40000	2,4	iO	973	-	нв3	90	L	6	B30D		174	180	190	197	204
6,1	1731	153,21 ⁽¹⁾	40000	2,8									3					
6,6	1585	140,28	40000	3,1														
7,5	1400	123,93 (1)	40000	3,5														
8,1	1302	176,05 ⁽¹⁾	40000	3,7	iO	973	-	НВ3	90	s	4	B30D		173	177	189	193	204
9,3	1133	153,21 ⁽¹⁾	40000	4,3									3					
10	1038	140,28	40000	4,7									l o i					
6,3	1664	147,32 (1)	28400	1,8	iO	873	-	НВ3	90	L	6	B25D		114	120	119	126	201
7,3	1434	126,91 ⁽¹⁾	28500	2,1									3					
													3					
8,2	1289	174,19	28600	2,3	iO	873	-	НВ3	90	S	4	B25D		113	117	118	122	201
8,6	1216	164,34 ⁽¹⁾	28700	2,5									3					
9,6	1090	147,32 (1)	28800	2,8														
11	939	126,91 ⁽¹⁾	28800	3,2														
12	857	115,82	28900	3,5														
8,2	1283	113,56	17200	1,35	iO	773	-	HB3	90	L	6	B20D		68	74	75	82	198
9,6	1096	97,05	18000	1,6									3					
10	1001	135,28	18400	1,75	iO	773	-	HB3	90	S	4	B20D		67	71	74	78	198
11	951	128,52	18600	1,85									3					
13	840	113,56	18900	2,1									'					
15	718	97,05	19300	2,4														
16	658	88,97	19400	2,7														
18	578	78,07	19600	3														
19	547	73,99	19600	3,2														

 $^{^{(1)}}$ Endliche Übersetzung i

$P_1 = 1,1$	kW								<u></u> kg		p.
n ₂	M ₂	i	F _{r2}	fs				Füße		Flansch	۳
min ⁻¹	N m		N							нв нва	2
13	799	108,03	10700	1,15	iO 673 - HB3 9	0 S 4 B16D	, 🕒	48	52	54 58	195
14	759	102,62	11000	1,10	10 010 1100 0	0 0 4 5105		-0	02	04 00	100
16	666	90,04	11600	1,35			3 '				
19	565	76,37	12200	1,6							
21	510	68,95	12400	1,75							
23	449	60,66	12700	2							
25	424	57,28	12800	2,1							
29	361	48,77	13000	2,5							
32	328	44,32	13000	2,7							
37	284	38,39	13000	3,1							
16	668	90,26 (1)	6280	1	iO 573 - HB3 9	0 S 4 B16D	. 4	44	48	51 55	192
19	566	76,56 ⁽¹⁾	8010	1,2			3				
21	511	69,12	8420	1,3			3				
23	450	60,81 (1)	8710	1,5							
25	425	57,42 ⁽¹⁾	8820	1,6							
29	362	48,89	9080	1,85							
32	329	44,43	9210	2							
37	285	38,49	9370	2,4							
40	264	35,7	9440	2,5							
47	224	30,28	9570	3							
52	202	27,34	9430	3,3							
59	178	24,05	9130	3,8							
63	168	22,71	9000	4							
73	143	19,34	8640	4,5							
81	130	17,57	8420	4,7							
93	113	15,22	8100	5,3							
107	98	13,25	7790	5,9							
119	88	11,92	7490	5,2							
126	83	11,26	7370	5,5							
148	71	9,59	7040	6,3							
163	64	8,71	6850	6,7							
188	56	7,55	6570	7,2							
216	49	6,57	6310	7,8	10 100 1100 1100		B ₂		4.4	22 12	100
25	420	56,83	5430	1,05	iO 473 – HB3 9	0 S 4 B16D		37	41	39 43	189
29 31	362 341	48,95 ⁽¹⁾ 46,03 ⁽¹⁾		1,25			3				
36	293	39,61	7160	1,3 1,55							
40	262	35,39	7050	1,55							
40 45	232	31,3	6920	1,7							
48	217	29,32	6840	2,1							
55	192	25,91	6690	2,3							
59	178	24,06	6060	2,5							
65	161	21,81	6460	2,8							
73	145	19,58	6310	3,1							
	i .	I f	I	l '	l The state of the			- 1	I	I	1

 $^{^{(1)}}$ Endliche Übersetzung i

P ₁ = 1,1	kW								£ k	g		p.
n ₂	M ₂	i	F _{r2}	fs				Füß		Flan	sch	
min ⁻¹	N m		N					НВ	HBZ	НВ	HBZ	
47	222	29,96	3430	1	iO 373 - HB3 9	0 S 4 B12D		32	36	34	38	186
57	185	24,99	3440	1,2			3					
61	173	23,36	3430	1,25			3					
70	149	20,19	3410	1,4								
83	127	17,15	3360	1,6								
93	113	15,31	3310	1,7								
109	97	13,08	3240	1,9								
117	90	12,14	3200	2								
135	78	10,49	3120	2,3								
159	66	8,91	3020	2,7								
178	59	7,96	2950	3								
209	50	6,8	2850	3,4								
223	47	6,37	2800	3,4								
265	40	5,36	2690	3,8								

$P_1 = 1,5$	kW																	
5,4	2655	176,05 ⁽¹⁾	40000	1,85	iO	973	-	НВ3	100	LA	6	B30E	. 4	180	186	197	203	204
6,2	2310	153,21 ⁽¹⁾	40000	2,1									3					
6,8	2115	140,28	40000	2,3									3					
7,7	1869	123,93 (1)	40000	2,6														
8,1	1764	176,05 (1)	40000	2,8	iO	973	-	НВ3	90	L	4	B30D	. 41	173	179	190	196	204
9,3	1535	153,21 ⁽¹⁾	40000	3,2									3					
10	1405	140,28	40000	3,5									3 †					
12	1241	123,93 ⁽¹⁾	40000	3,9														
6,4	2222	147,32 (1)	27900	1,35	iO	873	-	НВ3	100	LA	6	B25E		123	129	129	135	201
7,5	1914	126,91 ⁽¹⁾	28200	1,55									3					
8,2	1746	115,82	28300	1,7									, o					
9,2	1549	102,71 (1)	28400	1,95														
8,2	1745	174,19	28300	1,7	iO	873	-	HB3	90	L	4	B25D		113	119	119	125	201
8,7	1646	164,34 ⁽¹⁾	28400	1,8									3					
9,7	1476	147,32 (1)	28500	2									7					
11	1271	126,91 (1)	28600	2,4														
12	1160	115,82	28700	2,6														
14	1029	102,71 (1)	28800	2,9														
17	865	86,34	28900	3,5														
8,4	1712	113,56	14300	1	iO	773	-	НВ3	100	LA	6	B20E		77	83	85	91	198
9,8	1463	97,05	16100	1,2									3					
11	1342	88,97	16800	1,3									Ţ					
12	1177	78,07	17600	1,5														

 $^{^{(1)}}$ Endliche Übersetzung i

$P_1 = 1,5$	5 kW								k	g g		p.
n ₂	M ₂	i	F _{r2}	fs				Füß	_	Flar	nsch	
min ⁻¹	N m		N					НВ	HBZ	НВ	HBZ	
		135,28	16800	1.2	iO 773 - HB3 9	0 L 4 B20D		67	73	75	81	198
11 11	1355		17100	1,3	iO 773 – HB3 9	0 L 4 B20D		07	13	75	01	190
13	1287 1138	128,52 113,56		1,35 1,55			3					
			17800									
15 16	972 891	97,05	18500	1,8								
16		88,97	18800	1,95								
18	782	78,07	19100	2,2								
19 22	741	73,99	19200	2,4								
	649	64,75	19400	2,7								
25	584	58,34	19600	3								
28	513	51,18	19700	3,4								
32 36	452 401	45,16 40,04	19800 19900	3,9								
16				4,4	iO 673 - HB3 9	0 L 4 D4CD		49	55	54	60	195
19	902	90,04 76,37	9710	1	10 6/3 — пвз 9	0 L 4 B16D		49	ວວ	54	60	195
21	765 604	68,95	10900	1,2			3					
	691 608		11400 11900	1,3								
24		60,66		1,45								
25	574	57,28	12100	1,55								
29	489	48,77	12500	1,8								
32	444	44,32	12700	2								
37	385	38,39	12900	2,3								
40	357	35,62	13000	2,5								
47	303	30,22	13000	2,9								
52 60	273 240	27,28 24	13000 13000	3,2 3,6								
24	609	60,81 (1)	7660	1,1	iO 573 - HB3 9	0 L 4 B16D	—	44	50	51	57	192
25	575	57,42 (1)	7930	1,15	10 373 - 1103 3	0 L 4 B10B		44	50	51	31	102
29	490	48,89	8520	1,35			3					
32	445	44,43	8720	1,55								
37	386	38,49	8980	1,75								
40	358	35,7	9090	1,85								
47	303	30,28	9130	2,2								
52	274	27,34	8950	2,2								
52 59	241	24,05	8710	2,4								
63	228	22,71	8600	2,0								
63 74	194	19,34	8300	3,4								
/ 	134	10,04	0000	J,4	l .		1					

 $^{^{(1)}}$ Endliche Übersetzung i

$P_1 = 1,5$	5 kW								k	d a		p.
n ₂	M ₂	i	F _{r2}	fs				Füß	_	Flar	sch	
min ⁻¹	N m		N					НВ	HBZ	НВ	HBZ	
36	397	39,61	6080	1,15	iO 473 - HB3 9	90 L 4 B16D		37	43	40	46	189
40	355	35,39	6340	1,15	10 475 - 1165 3	90 L 4 B10B		31	40	40	40	103
46	314	31,3	6290	1,45			3					
46 49		29,32	6250									
49 55	294 260	25,91	6160	1,55 1,75								
59	241	24,06	6090	1,85								
66	218	21,81	6020	2,1								
73	196	19,58	5920	2,3								
85	169	16,86	5760	2,5								
90	159	15,86	5690	2,7								
105	137	13,65	5520	2,9								
117	122	12,19	5390	3,2								
122	118	11,77	5300	2,4								
61	234	23,36	2880	0,95	iO 373 – HB3 9	90 L 4 B12D		33	39	35	41	186
71	202	20,19	2920	1			3					
83	172	17,15	2950	1,15								
93	153	15,31	2940	1,25								
109	131	13,08	2920	1,4								
118	122	12,14	2910	1,5								
136	105	10,49	2870	1,7								
160	89	8,91	2810	2								
180	80	7,96	2760	2,2								
210	68	6,8	2680	2,5								
225	64	6,37	2650	2,5								
267	54	5,36	2560	2,8								

$P_1 = 2,2$	kW																
6,3	3353	153,21 ⁽¹⁾	40000	1,45	iO	973	-	НВ3	112 M	6	B30F	. 4	188	197	205	214	204
6,8	3070	140,28	40000	1,6								3					
7,7	2712	123,93 (1)	40000	1,8								3					
9,1	2301	105,13	40000	2,1													
8,2	2569	176,05 ⁽¹⁾	40000	1,9	iO	973	-	HB3	100 LA	4	B30E		180	186	197	203	204
9,4	2235	153,21 ⁽¹⁾	40000	2,2								3					
10	2047	140,28	40000	2,4								J •					
12	1808	123,93 (1)	40000	2,7													
14	1534	105,13	40000	3,2													
15	1412	96,8	40000	3,4													
9,8	2150	147,32 (1)	27900	1,4	iO	873	_	HB3	100 LA	4	B25E		123	129	129	135	201
11	1852	126,91 ⁽¹⁾	28200	1,6								3					
12	1690	115,82	28300	1,8								3					
14	1499	102,71 (1)	28500	2													
17	1260	86,34	28600	2,4													
18	1158	79,34	28700	2,6													
20	1028	70,46	28800	2,9													
23	919	63 (1)	28800	3,3													

⁽¹⁾ Endliche Übersetzung i

$P_1 = 2,2$	2 kW					~©							عا	g		p.
n ₂	M ₂	i	F _{r2}	fs								For	ßen		nsch	ر ت
	_	•					3		3.9						HBZ	
min ⁻¹	N m		N						-		I					
13	1657	113,56	14700	1,05	iO	773	-	HB3 100	LA 4	B20E		77	83	85	91	198
15	1416	97,05	16300	1,25							3					
16	1298	88,97	17000	1,35							,					
18	1139	78,07	17800	1,55												
19	1080	73,99	18000	1,6												
22	945	64,75	18500	1,85												
25	851	58,34	18800	2,1												
28	747	51,18	19200	2,3												
32	659	45,16	19400	2,7												
36	584	40,04	19500	3												
41	513	35,2	19700	3,4												
47	451	30,89	19800	3,9												
49	427	29,27	19800	4,1												
56	374	25,62	19900	4,7												
24	885	60,66	9750	1	iO	673	-	HB3 100	LA 4	B16E		58	64	64	70	195
25	836	57,28	10200	1,05							3					
30	712	48,77	11200	1,25							,					
32	647	44,32	11600	1,35												
38	560	38,39	12100	1,55												
40	520	35,62	12300	1,7												
48	441	30,22	12700	2												
53	398	27,28	12800	2,2												
60	350	24	13000	2,5												
64	331	22,66	13000	2,6												
75	281	19,3	13000	3												
82	256	17,54	13000	3,2												
95	222	15,19	13000	3,5												
109	193	13,22	13000	3,5												
115	182	12,48	13000	2,9												
135	155	10,63	13000	3,2												
149	141	9,66	13000	3,4												
172	122	8,37	13000	3,6												
198 32	106 648	7,28 44,43	12700 7040	4 1,05	iO	F72		HB3 100	1	R16E		54	60	61	67	192
32 37	562	38,49	7970		10	3/3	_	пво 100	LA 4	DIGE		54	00	υı	07	192
40	521	35,7	8290	1,2 1,3							3					
48	442	30,28	8230	1,5												
53	399	27,34	8140	1,7												
60	351	24,05	8000	1,7												
63	331	22,71	7930	2												
74	282	19,34	7730	2,3												
82	256	17,57	7590	2,3												
95	222	15,22	7380	2,7												
109	193	13,25	7170	3												
121	174	11,92	6850	2,7												
128	164	11,26	6770	2,8												
120	'04	11,20	0,70	2,0	l						1	I	I	1	I	

$P_1 = 2,2$	kW								۶ k	2		p.
n ₂	M ₂	i	F _{r2}	fs				Füß		Flar	ısch	
min ⁻¹	N m		N					НВ	HBZ	НВ	HBZ	
56	378	25,91	5260	1,2	iO 473 – HE	B3 100 LA 4 B16E		47	53	49	55	189
66	318	21,81	5260	1,4			3					
74	286	19,58	5240	1,6			•					
85	246	16,86	5180	1,75								
91	231	15,86	5140	1,85								
106	199	13,65	5050	2								
118	178	12,19	4970	2,2								
122	172	11,77	4870	1,65								
136	154	10,56	4790	1,85								
158	133	9,1	4660	2,1								
110	191	13,08	2380	0,95	iO 373 – HE	B3 100 LA 4 B12E		42	48	44	50	186
137	153	10,49	2430	1,2								
162	130	8,91	2440	1,4			3					
181	116	7,96	2430	1,5								
212	99	6,8	2400	1,7								
226	93	6,37	2390	1,7								
269	78	5,36	2340	1,95								

$P_1 = 3 \text{ k}$	W																
7,8	3660	123,93 (1)	40000	1,35	iO	973	-	НВ3	132 S	6	B30G		210	221	226	237	204
9,2	3105	105,13	40000	1,55								3					
10	2859	96,8	40000	1,7								3					
11	2556	86,52	40000	1,9													
8,2	3479	176,05 ⁽¹⁾	40000	1,4	iO	973	-	HB3	112 MA	4	B30E		188	194	205	211	204
9,5	3027	153,21 ⁽¹⁾	40000	1,6								3					
10	2772	140,28	40000	1,75													
12	2449	123,93 (1)	40000	2													
14	2077	105,13	40000	2,3													
15	1913	96,8	40000	2,5													
17	1710	86,52	40000	2,8													
19	1539	77,89 (1)	40000	3,2													
21	1394	70,54	40000	3,5													
23	1236	62,55	40000	3,9													
26	1117	56,55	40000	4,4													
9,8	2911	147,32 (1)	27000	1,05	iO	873	-	HB3	112 MA	4	B25E		131	137	136	142	201
11	2508	126,91 (1)	27500	1,2								3					
13	2288	115,82	27800	1,3													
14	2029	102,71 (1)	28000	1,5													
17	1706	86,34	28300	1,75													
18	1568	79,34	28400	1,9													
21	1392	70,46	28600	2,2													
23	1245	63 (1)	28600	2,4													
26	1119	56,64	28700	2,7													
29	971	49,16	28800	3,1													
33	870	44,02	28800	3,3													
40	722 Übersetzung	36,52 (1)	28200	3,9													

(1) Endliche Übersetzung *i* 2635-23.03-1

									\									
$P_1 = 3 \text{ k}$	W				~										kg			
$n_{_2}$	M ₂	i	F _{r2}	fs									Fül	⊾ ßen		nsch		
min ⁻¹	N m		N		€.		3			6.9			НВ	HBZ	НВ	HBZ		
16	1758	88,97	13800	1	iO	773	_	HB3	112 M	A 4	B20E		86	92	94	100	198	
19	1543	78,07	15500	1,15														
20	1462	73,99	16000	1,2								3						
22	1279	64,75	17100	1,35														
25	1153	58,34	17700	1,5														
28	1011	51,18	18300	1,75														
32	892	45,16	18700	1,95														
36	791	40,04	19000	2,2														
41	695	35,2	19300	2,5														
47	610	30,89	19500	2,9														
33	876	44,32	9820	1	iO	673	_	НВ3	112 M	A 4	B16E		66	72	71	77	195	
38	759	38,39	10900	1,15														
41	704	35,62	11300	1,25								3						
48	597	30,22	11900	1,45														
53	539	27,28	12200	1,6														
60	474	24	12500	1,85														
64	448	22,66	12600	1,95														
75	381	19,3	12900	2,2														
83	346	17,54	13000	2,4														
95	300	15,19	13000	2,6														
110	261	13,22	13000	2,6														
116	247	12,48	13000	2,2														
136	210	10,63	13000	2,4														
150	191	9,66	13000	2,5														
48	598	30,28	7190	1,1	iO	573	_	НВ3	112 M	A 4	B16E	4	61	67	68	74	192	
53	540	27,34	7190	1,25								3						
60	475	24,05	7170	1,4								3						
64	449	22,71	7150	1,5														
75	382	19,34	7060	1,7														
83	347	17,57	6980	1,75														
95	301	15,22	6860	2														
109	262	13,25	6710	2,2														
122	236	11,92	6380	1,95														
129	222	11,26	6330	2,1														
151	189	9,59	6160	2,4														
166	172	8,71	6040	2,5														
192	149	7,55	5870	2,7														
221	130	6,57	5700	2,9														

 $^{^{(1)}}$ Endliche Übersetzung i

$P_1 = 3 \text{ k}$	cW							~ >				£ k	9		p.
n ₂	M ₂	i	F _{r2}	fs				W			Füí	ßen	Flar	nsch	
min ⁻¹	N m		N			3 9	و				НВ	HBZ	НВ	HBZ	
74	387	19,58	4450	1,15	iO 473	- H	HB3 112 MA	4	B16E	. +1	54	60	57	63	189
86	333	16,86	4500	1,3						3					
91	313	15,86	4510	1,35						J					
106	270	13,65	4500	1,5											
119	241	12,19	4480	1,6											
123	232	11,77	4360	1,2											
137	209	10,56	4340	1,35											
159	180	9,1	4280	1,55											
169	169	8,56	4250	1,6											
197	145	7,36	4160	1,75											
220	130	6,58	4090	1,85											
249	115	5,81	4000	2											
163	176	8,91	2020	1	iO 373	- H	HB3 112 MA	4	B12E	4	50	56	52	58	186
182	157	7,96	2050	1,1											
213	134	6,8	2080	1,25						3					
228	126	6,37	2090	1,25											
270	106	5,36	2090	1,45											

$P_1 = 4 \text{ k}$	<i>P</i> ₁ = 4 kW																	
9,5	4036	153,21 ⁽¹⁾	40000	1,2	iC)	973	-	НВ3	112 M	4	B30F	4	190	199	207	216	204
10	3696	140,28	40000	1,3									3					
12	3265	123,93 (1)	40000	1,5									3					
14	2770	105,13	40000	1,75														
15	2550	96,8	40000	1,9														
17	2279	86,52	40000	2,1														
19	2052	77,89 (1)	40000	2,4														
21	1858	70,54	40000	2,6														
13	3051	115,82	26900	1	iC)	873	-	НВ3	112 M	4	B25F	. 4	133	142	138	147	201
14	2706	102,71 (1)	27300	1,1									3					
17	2275	86,34	27800	1,3									J					
18	2090	79,34	28000	1,45														
21	1856	70,46	28200	1,6														
23	1660	63 (1)	28400	1,8														
26	1492	56,64	28500	2														
29	1295	49,16	28600	2,3														
33	1160	44,02	28200	2,5														
40	962	36,52 (1)	27200	2,9														

 $^{^{(1)}}$ Endliche Übersetzung i

P ₁ = 4 H	kg p.				
n ₂	M ₂	i	F _{r2}	fs	Füßen Flansch
min ⁻¹					нв н
	N m		N		
22	1706	64,75	14300	1,05	iO 773 - HB3 112 M 4 B20F 88 97 96 105 198
25	1537	58,34	15600	1,15	3
28	1348	51,18	16700	1,3	
32	1190	45,16	17500	1,45	
36	1055	40,04	18100	1,65	
38	1011	38,39	18300	1,7	
41	927	35,2	18600	1,9	
47	814	30,89	19000	2,2	
50	771	29,27	19100	2,3	
57	675	25,62	19300	2,6	
63	608	23,08	19500	2,9	
72	533	20,25	19600	3,2	
48	796	30,22	10600	1,1	iO 673 - HB3 112 M 4 B16F 68 77 73 82 195
53	718	27,28	11200	1,2	3
60	632	24	11700	1,35	
64	597	22,66	11900	1,45	
75	508	19,3	12400	1,65	
83	462	17,54	12600	1,8	
95	400	15,19	12800	1,9	
110	348	13,22	13000	1,95	
116	329	12,48	13000	1,65	
136	280	10,63	13000	1,8	
150	254	9,66	12800	1,9	
173	220	8,37	12400	2	
199	192	7,28	12000	2,2	
60	634	24,05	6140	1,05	iO 573 - HB3 112 M 4 B16F 63 72 70 79 192
64	598	22,71	6180	1,1	3
75	509	19,34	6230	1,3	
83	463	17,57	6230	1,35	
95	401	15,22	6200	1,5	
109	349	13,25	6140	1,65	
122	314	11,92	5800	1,45	
129	297	11,26	5780	1,55	
151	253	9,59	5680	1,8	
166	230	8,71	5620	1,9	
192	199	7,55	5500	2	
221	173	6,57	5380	2,2	

										2		
$P_1 = 5,5$	kW								k	g		p.
n ₂	M ₂	i	F _{r2}	fs				Fül	3en	Flan	sch	
min ⁻¹	N m		N					НВ	HBZ	НВ	HBZ	
12	4428	123,93 (1)	40000	1,1	iO 973 - HB3 1	32 S 4 B30G		214	225	230	241	204
14	3756	105,13	40000	1,3			3					
15	3459	96,8	40000	1,4			3					
17	3092	86,52	40000	1,6								
19	2783	77,89 (1)	40000	1,75								
21	2520	70,54	40000	1,95								
24	2235	62,55	40000	2,2								
26	2021	56,55	39600	2,4								
31	1713	47,93 (1)	38400	2,8								
17	3085	86,34	26700	0,95	iO 873 – HB3 1	32 S 4 B25G		158	169	163	174	201
19 21	2835 2518	79,34 70,46	27100 27500	1,05 1,2			3					
23	2251	63 (1)		1,35								
26	2024	56,64	27200	1,5								
30	1757	49,16	26800	1,7								
33	1573	44,02	26400	1,85								
40	1305	36,52 (1)	25700	2,1								
47	1121	31,39	25100	2,7								
53	996	27,88	24600	2,9								
33	1614	45,16	14800	1,1	iO 773 - HB3 1	32 S 4 B20G		110	121	118	129	198
37	1431	40,04	16100	1,2			3					
48	1103	30,89	17900	1,6			Ţ					
50	1046	29,27	18100	1,65								
57	915	25,62	18600	1,9								
64	825	23,08	18900	2,1								
73 82	723 638	20,25 17,87	19200 19400	2,4 2,5								
93	566	15,84	19100	2,7								
109	483	13,52	18500	3,1								
119	441	12,36	17800	2,4								
136	387	10,84	17400	2,6								
61	857	24	9910	1	iO 673 - HB3 1	32 S 4 B16G	4	91	102	97	108	195
65	810	22,66	10400	1,05			3					
76	689	19,3	11300	1,25			3					
84	626	17,54	11700	1,3								
97	543	15,19	12200	1,4								
111	472	13,22	12500	1,4								
118	446	12,48	12600	1,2								
138 152	380	10,63	12400	1,3								
152 176	345 299	9,66 8,37	12200 11900	1,4 1,45								
202	299 260	7,28	11600	1,45								
202	200	1,20	11000	1,0								

 $^{^{(1)}}$ Endliche Übersetzung i

$P_1 = 7,5$	kW								kg p.					
$n_{_2}$	M_{2}	i	F_{r2}	fs					Füí	∟ 3en	_	nsch		
min ⁻¹	N m		N				4		НВ	HBZ	НВ	HBZ		
15	4749	96,8	38400	1,05	iO 973 –	HB3 132 N	1 4 B3	0G	222	233	238	249	204	
17	4245	86,52	38300	1,15										
19	3821	77,89 ⁽¹⁾	38100	1,25				3						
21	3460	70,54	37800	1,4										
23	3069	62,55	37400	1,6										
26	2774	56,55	37000	1,75										
30	2351	47,93 (1)	36200	2,1										
35	2054	41,87	35500	2,4										
38	1878	38,3	35000	2,6										
43	1679	34,23	34300	2,9										
23	3091	63 (1)	24100	0,95	iO 873 –	HB3 132 N	1 4 B2	5G	166	177	171	182	201	
26	2779	56,64	24200	1,1				3						
30	2412	49,16	24200	1,25										
33	2160	44,02	24100	1,35										
40	1792	36,52 (1)	23800	1,55										
47	1540	31,39	23400	1,95										
52	1367	27,88	23100	2,1										
59	1222	24,92	22700	2,3										
65	1099	22,41	22400	2,3										
75	954	19,45	21800	2,7										
84	854	17,42	21400	2,8										
91	785	16	20500	2,5										
101	709	14,45	20600	3,3										
47	1515	30,89	15700	1,15	iO 773 –	HB3 132 N	1 4 B2	0G	118	129	126	137	198	
50	1436	29,27	16200	1,2				3						
57	1257	25,62	17200	1,4				'						
63	1132	23,08	17800	1,55										
72	993	20,25	18400	1,7										
82	876	17,87	18500	1,85										
92	777	15,84	18200	2										
108	663	13,52	17700	2,3										
118	606	12,36	17000	1,7										
135	532	10,84	16600	1,85										
153	469	9,56	16200	2										
172	416	8,48	15800	2,1										
202	355	7,24	15300	2,3										

$P_1 = 9,2$	2 kW													٤	3		p.
n ₂	M ₂	i	F _{r2}	fs									Fül	ßen	g Flan	nsch	ρ.
min ⁻¹	N m	-	N				3		Ę	.](HBZ			
		(0)								1	<u></u>						
19	4687	77,89 (1)		1,05	iO	973	-	HB3 13	2 MB	4	B30H		224	236	241	253	204
21	4245	70,54	35100	1,15								3					
23	3764	62,55	35000	1,3													
26	3403	56,55	34800	1,45													
30	2884	47,93 (1)		1,7													
35	2519	41,87	33900	1,95													
38	2304	38,3	33500	2,1													
43	2059	34,23	33000	2,4													
47	1854	30,82	32400	2,6													
52	1679	27,91	31900	2,9													
59	1489	24,75	31200	3,3						_			400	400		100	
30	2958	49,16	22000	1	iO	873	-	HB3 13	2 MB	4	B25H		168	180	1/4	186	201
33	2649	44,02	22200	1,1								3					
40	2198	36,52 (1)		1,25								·					
47	1889	31,39	22000	1,6													
52	1677	27,88	21900	1,75													
59	1499	24,92	21600	1,85													
65	1348	22,41	21400	1,9													
75	1170	19,45	21000	2,2													
84	1048	17,42	20600	2,3													
91	963	16	19700	2													
101	869	14,45	20000	2,7													
116	756	12,56	19500	3													
131	672	11,17	18500	2,5													
146	601	10	18200	2,8													
63	1389	23,08	16500	1,25	iO	773	-	HB3 13	2 MB	4	B20H		121	133	129	141	198
72	1218	20,25	17400	1,4								3					
82	1075	17,87	17600	1,5								, '					
92	953	15,84	17300	1,65													
108	814	13,52	17000	1,85													
118	743	12,36	16200	1,4													
135	652	10,84	15900	1,55													
153	575	9,56	15600	1,65													
172	510	8,48	15300	1,75													
202	436	7,24	14900	1,9													

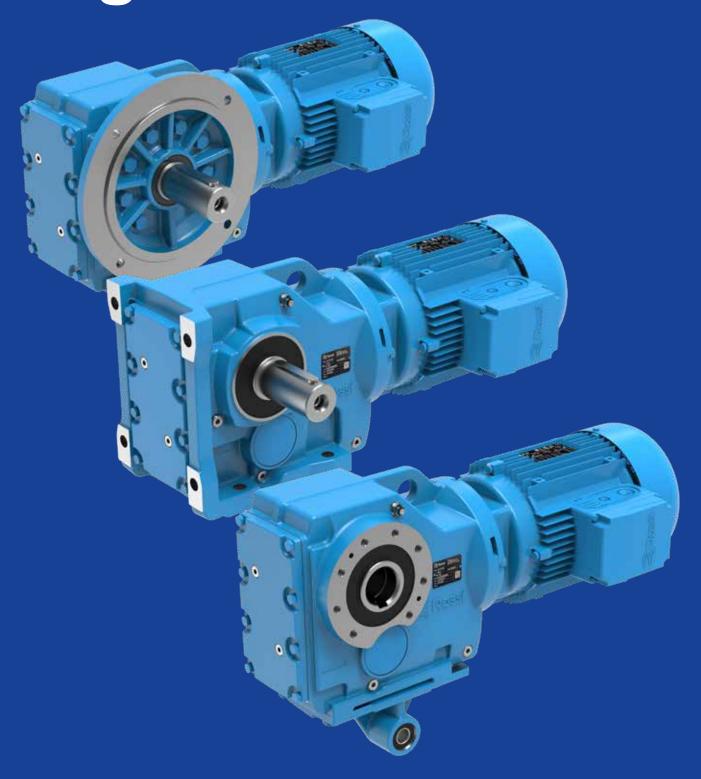
⁽¹⁾ Endliche Übersetzung i

P ₁ = 11	kW				~ \$\frac{1}{2}						£	9		p.
n ₂	M ₂	i	F _{r2}	fs						Füß	_	Flar	sch	ٺ
min ⁻¹	N m		N				6.9					НВ		
21	5041	70,54	32300	0,95	iO 973	- HB3 1	60 M 4	B30H		172	_	188	_	204
24	4470	62,55	32500	1,1	10 9/3	- 1100 1	OU IVI 4	БЭИП		172	_	100	_	204
26	4041	56,55	32500	1,1					3					
31	3425	47,93 ⁽¹⁾		1,4										
35	2992	41,87	32200	1,65										
38	2736	38,3	31900	1,8										
43	2446	34,23	31600	2										
48	2202	30,82	31200	2,2										
53	1994	27,91	30700	2,4										
59	1768	24,75	30200	2,8										
66	1599	22,37	29700	3										
33	3146	44,02	20100	0,9	iO 873	- HB3 1	60 M 4	B25H		114	_	119	_	201
40	2610	36,52 (1)	20500	1,05										
47	2243	31,39	20600	1,35					3					
53	1992	27,88	20500	1,45										
59	1781	24,92	20400	1,55										
66	1601	22,41	20300	1,6										
76	1390	19,45	20000	1,85										
84	1244	17,42	19800	1,95										
92	1143	16	18800	1,7										
102	1032	14,45	19300	2,3										
117	898	12,56	18900	2,5										
132	798	11,17	17900	2,1										
147	714	10	17600	2,4										
177	593	8,29	17000	2,6										
204	515	7,21	16600	2,8										
64	1649	23,08	14700	1,05	iO 773	- HB3 1	60 M 4	B20H		65	_	73	-	198
73	1447	20,25	16100	1,2					3					
82	1277	17,87	16600	1,25					J					
93	1132	15,84	16500	1,35										
109	966	13,52	16200	1,55										
119	883	12,36	15500	1,2										
136	774	10,84	15300	1,3										
154	683	9,56	15000	1,4										
173	606	8,48	14800	1,45										
203	517	7,24	14400	1,6										

$P_1 = 15$	kW				kg	p.
n ₂	M ₂	i	F _{r2}	fs	Füßen Flansch	
min ⁻¹	N m		N		HB HBZ HB HBZ	
31	4671	47,93 (1)	28100	1,05	iO 973 - HB3 160 L 4 B30H 172 - 188 -	204
35	4080	41,87	28400	1,2	3	
38	3731	38,3	28500	1,3		
43	3335	34,23	28500	1,45		
48	3002	30,82	28400	1,6		
53	2719	27,91	28200	1,8		
59	2411	24,75	28000	2		
66	2180	22,37	27700	2,2		
78	1848	18,96	27100	2,6		
89	1614	16,56	26600	3		
47	3058	31,39	17300	1	iO 873 - HB3 160 L 4 B25H	201
53	2716	27,88	17600	1,05	3	
59	2428	24,92	17900	1,15		
66	2183	22,41	18000	1,2		
76	1895	19,45	18000	1,35		
84	1697	17,42	18000	1,45		
92	1559	16	16800	1,25		
102	1408	14,45	17800	1,7		
117	1224	12,56	17600	1,85		
132	1088	11,17	16600	1,55		
147	974	10	16400	1,75		
177	808	8,29	16000	1,9		
204	703	7,21	15700	2,1		

$P_1 = 18$,5 kW																
35	5049	41,87	25100	0,95	iO	973	-	HB3 18	80 M	4	B30L	4	172	_	188	_	204
48	3715	30,82	26000	1,3								3					
53	3365	27,91	26000	1,45								3					
59	2984	24,75	26000	1,65													
65	2698	22,37	25900	1,8													
77	2286	18,96	25600	2,1													
88	1997	16,56	25300	2,4													
106	1670	13,85	24700	2,7													
122	1446	11,99	24200	3													
59	3005	24,92	15600	0,95	iO	873	-	HB3 18	80 M	4	B25L	. 4	114	_	119	-	201
65	2702	22,41	15900	0,95								3					
75	2345	19,45	16200	1,1								3					
84	2100	17,42	16400	1,15													
101	1742	14,45	16500	1,35													
117	1515	12,56	16400	1,5													
131	1346	11,17	15400	1,25													
147	1205	10	15300	1,4													
177	1000	8,29	15100	1,55													
203	870	7,21	14900	1,65													

⁽¹⁾ Endliche Übersetzung i

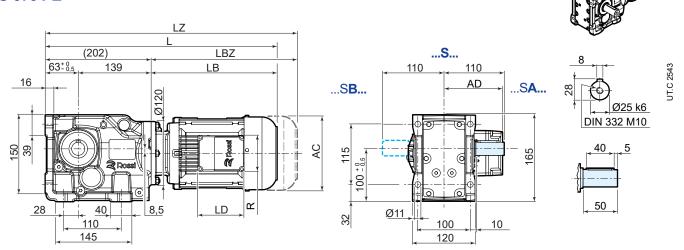

$P_1 = 22$	kW				kg	p.
n ₂	M ₂	i	F _{r2}	fs	Füßen Flansch	
min ⁻¹	N m		N		HB HBZ HB HBZ	
48	4403	30,82	23500	1,1	iO 973 - HB3 180 L 4 B30L 172 - 188 -	204
53	3988	27,91	23800	1,2	3	
59	3536	24,75	24100	1,4	• • • • • • • • • • • • • • • • • • •	
66	3197	22,37	24200	1,5		
78	2710	18,96	24100	1,8		
89	2367	16,56	24000	2,1		
106	1979	13,85	23700	2,3		
123	1714	11,99	23300	2,5		
141	1488	10,41	21800	2,1		
169	1244	8,71	21300	2,3		
76	2779	19,45	14500	0,9	iO 873 - HB3 180 L 4 B25L 114 - 119 -	201
84	2489	17,42	14800	1	3	
102	2065	14,45	15200	1,15		
117	1795	12,56	15300	1,25		
132	1595	11,17	14200	1,05		
147	1429	10	14300	1,2		
177	1185	8,29	14300	1,3		
204	1031	7,21	14200	1,4		

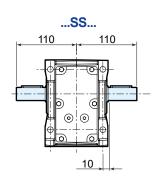
P ₁ = 30	kW																
59	4822	24,75	19600	1	iO	973	-	HB3 200	L	4	B30M	+	178	-	194	-	204
66	4360	22,37	20200	1,1													
78	3695	18,96	20700	1,3								3					
89	3227	16,56	21000	1,5													
106	2699	13,85	21200	1,7													
123	2337	11,99	21100	1,85													
141	2029	10,41	19500	1,55													
169	1697	8,71	19400	1,7													

Leerseite

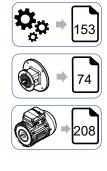
કોંદુાં

Maßzeichnungen Kegelstirnrad - iO


Sektioninhalt


12.1	iO 373	186
12.2	iO 473	189
12.3	iO 573	192
12.4	iO 673	195
12.5	iO 773	198
12.6	iO 873	201
12.7	iO 973	204

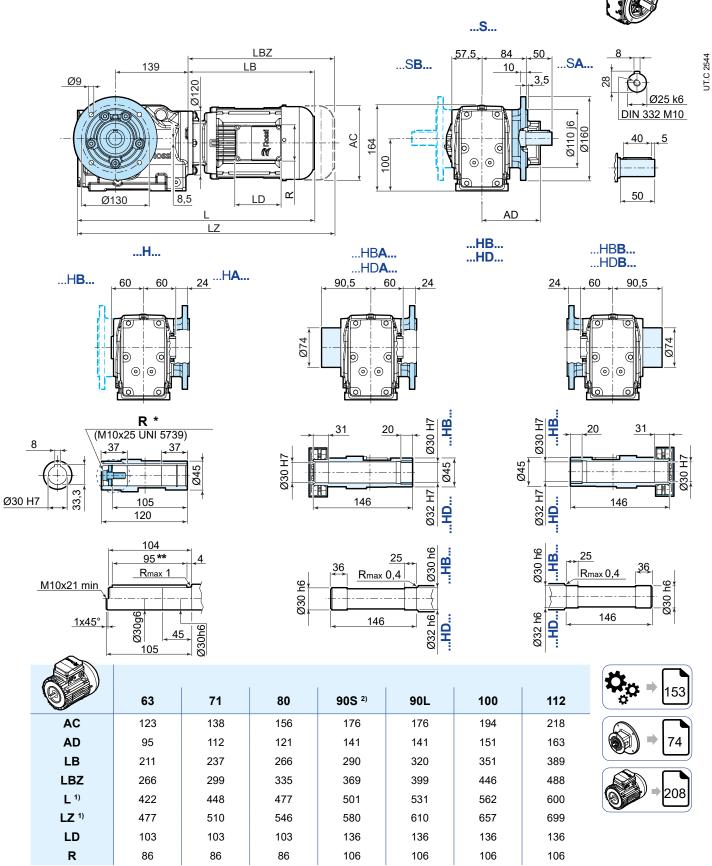
iO


12.1

iO 373 PE

	63	71	80	90S ^{2) 3)}	90L ³⁾	100 ³⁾	112 ³)
AC	123	138	156	176	176	194	218
AD	95	112	121	141	141	151	163
LB	211	237	266	290	320	351	389
LBZ	266	299	335	369	399	446	488
L 1)	413	439	468	492	522	553	591
LZ 1)	468	501	537	571	601	648	690
LD	103	103	103	136	136	136	136
D	96	96	96	106	106	106	106

Rossi


Für Details Maschinenseite A u. B s. Seite 39

¹⁾ S. auch Seite 80/81

²⁾ Bei Motor HB3-HB3Z 90S 2, HB3-HB3Z 90S 4 Abmessungen wie Motorgröße 90L

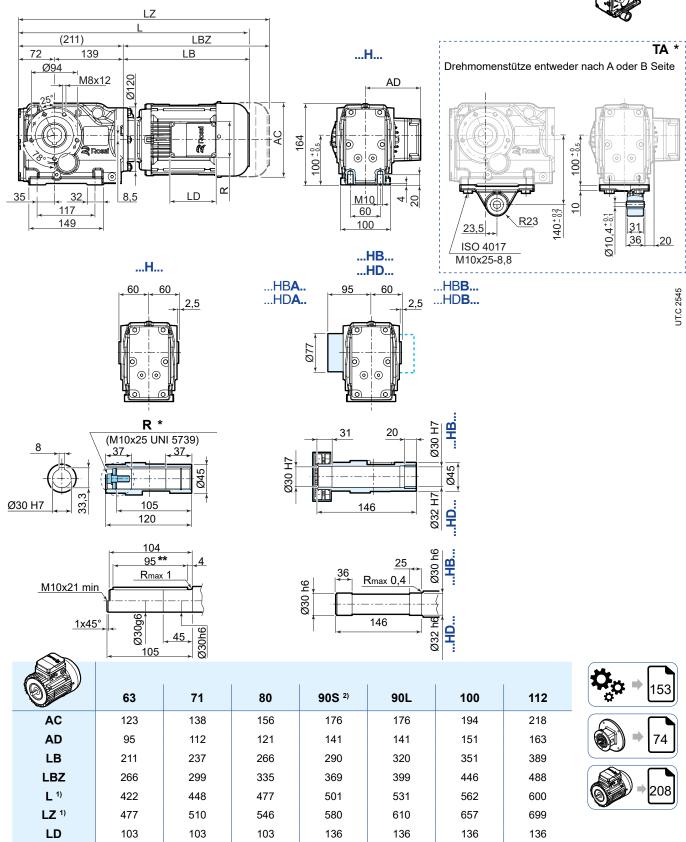
³⁾ Der Motor steht über die Montagefläche des Getriebefußes hinaus

iO 373 FE...F316

¹⁾ S. auch Seite 80/81

²⁾ Bei Motor HB3-HB3Z 90S 2, HB3-HB3Z 90S 4 Abmessungen wie Motorgröße 90L

Für Details Maschinenseite A u. B s. Seite 39


^{*} Optionen auf Anfrage

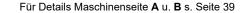
^{**} Beide Versionen mit Passfeder

iO

iO 373 SE

¹⁾ S. auch Seite 80/81

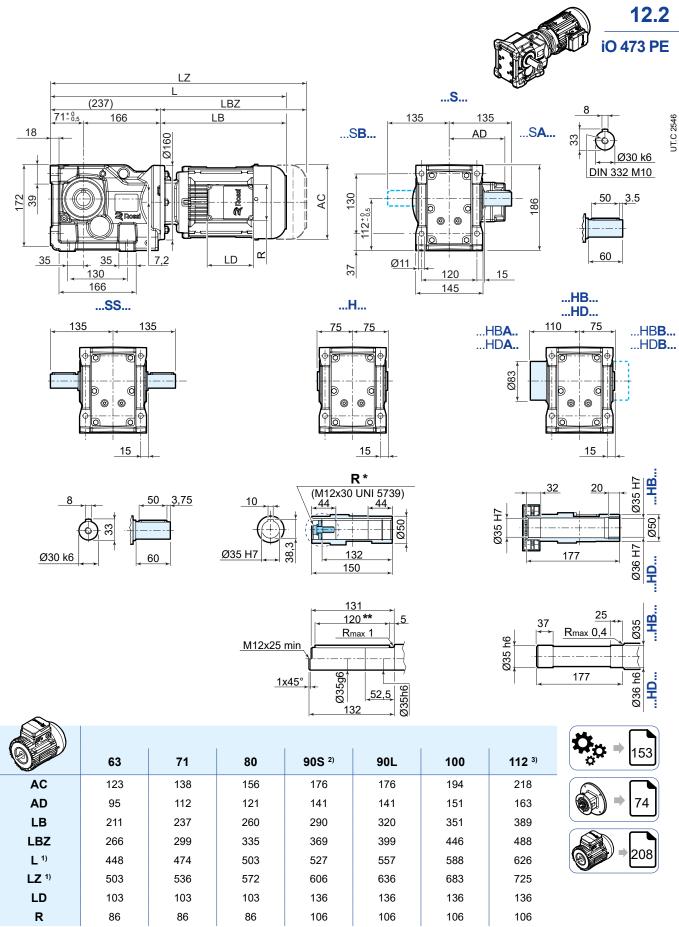
86


86

86

106

106


106

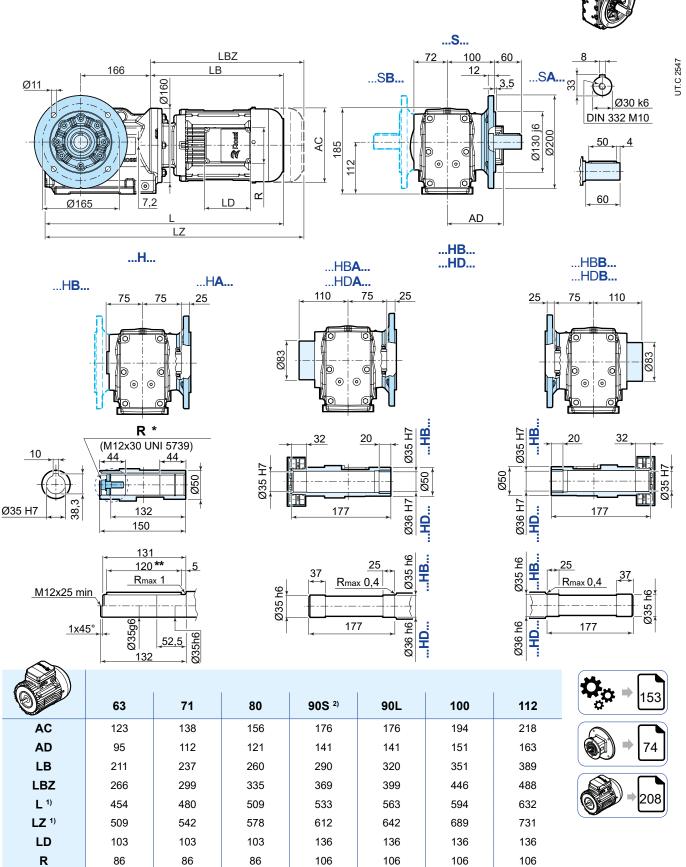
106

²⁾ Bei Motor HB3-HB3Z 90S 2, HB3-HB3Z 90S 4 Abmessungen wie Motorgröße 90L

¹⁾ S. auch Seite 80/81

²⁾ Bei Motor HB3-HB3Z 90S 2, HB3-HB3Z 90S 4 Abmessungen wie Motorgröße 90L

³⁾ Der Motor steht über die Montagefläche des Getriebefußes hinaus


Für Details Maschinenseite A u. B s. Seite 39

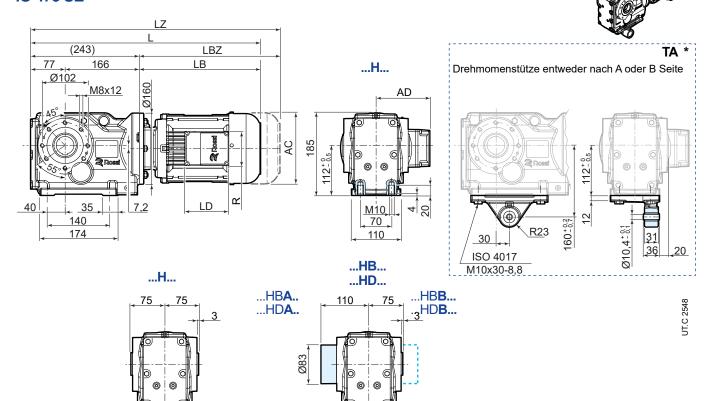
^{*} Optionen auf Anfrage

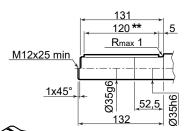
^{**} Beide Versionen mit Passfeder

iO

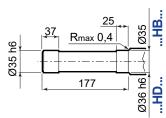
iO 473 FE...F420

¹⁾ S. auch Seite 80/81


^{*} Optionen auf Anfrage ** Beide Versionen mit Passfeder


²⁾ Bei Motor HB3-HB3Z 90S 2, HB3-HB3Z 90S 4 Abmessungen wie Motorgröße 90L

Für Details Maschinenseite A u. B s. Seite 39

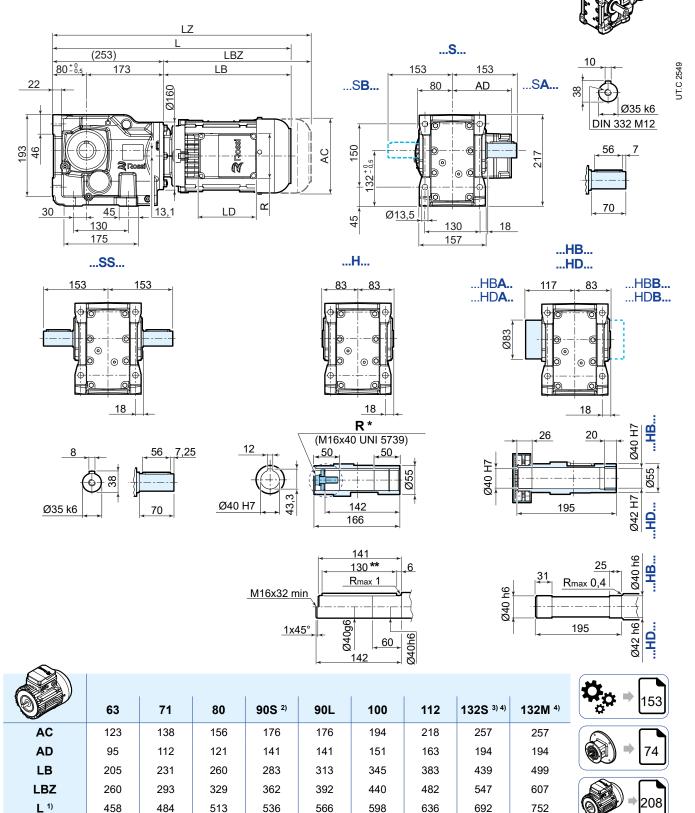

iO 473 SE

	N	
	(M12x30 UNI 5739)	
10	44	¥
	9	2
Ø35 H7 ↓	132	†
	₹ 150	

_	32	<u>.</u>	20	Ø35 H7	HB
Ø35 H7		+			Ø50
		177	→	Ø36 H7	HD
	27		25	2	<u>8</u>

	63	71	80	90S ²⁾	90L	100	112	
	00	, ,	00	300	JUL	100	112	
AC	123	138	156	176	176	194	218	
AD	95	112	121	141	141	151	163	
LB	211	237	260	290	320	351	389	
LBZ	266	299	335	369	399	446	488	
L 1)	454	480	509	533	563	594	632	
LZ 1)	509	542	578	612	642	689	731	
LD	103	103	103	136	136	136	136	
R	86	86	86	106	106	106	106	

¹⁾ S. auch Seite 80/81


²⁾ Bei Motor HB3-HB3Z 90S 2, HB3-HB3Z 90S 4 Abmessungen wie Motorgröße 90L

Für Details Maschinenseite A u. B s. Seite 39

^{*} Optionen auf Anfrage ** Beide Versionen mit Passfeder

12.3

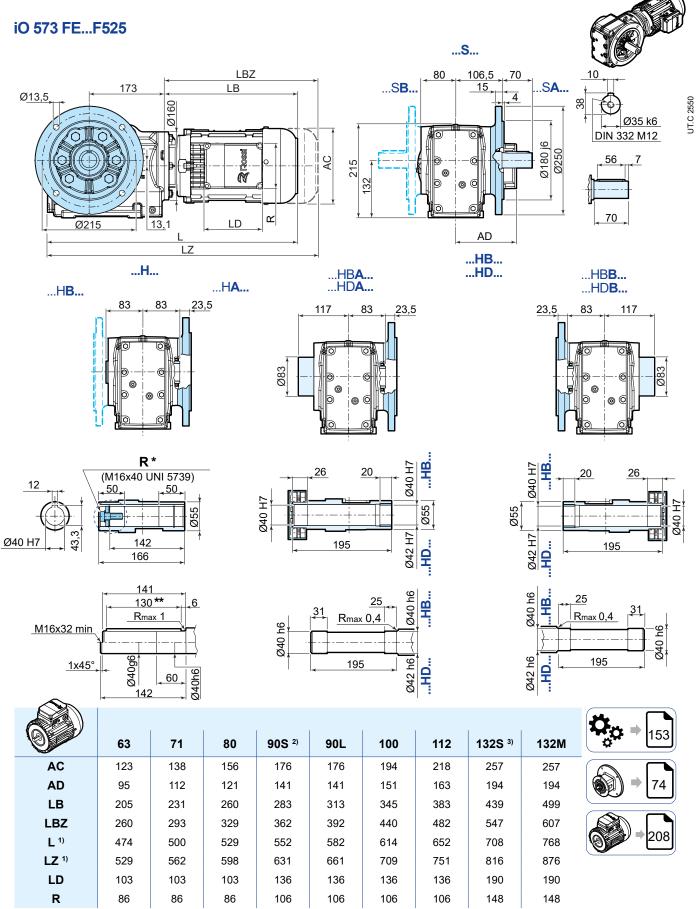
iO 573 PE

R

1) S. auch Seite 80/81

LZ 1)

LD



Für Details Maschinenseite A u. B s. Seite 39

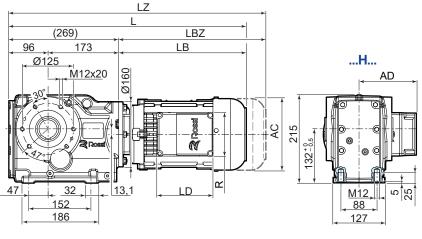
^{*} Optionen auf Anfrage
** Beide Versionen mit Passfeder

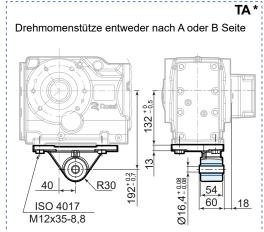
 ²⁾ Bei Motor HB3-HB3Z 90S 2, HB3-HB3Z 90S 4 Abmessungen wie Motorgröße 90L
 ³⁾ Bei Motor HB3-HB3Z 132SB 2, HB3-HB3Z 132SC 2, HB3-HB3Z 132S 4 Abmessungen wie Motorgröße 132M

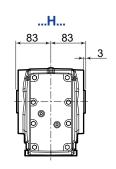
⁴⁾ Der Motor HB3-HB32 1325B 2, HB3-HB32 1325C 2, HB3-HB32 1325 4
4) Der Motor steht über die Montagefläche des Getriebefußes hinaus

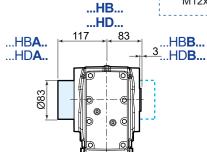
¹⁾ S. auch Seite 80/81

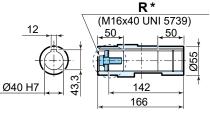
Bei Motor HB3-HB3Z 90S 2, HB3-HB3Z 90S 4 Abmessungen wie Motorgröße 90L
 Bei Motor HB3-HB3Z 132SB 2, HB3-HB3Z 132SC 2, HB3-HB3Z 132S 4 Abmessungen wie Motorgröße 132M

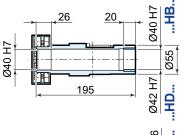

Für Details Maschinenseite A u. B s. Seite 39

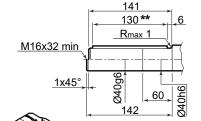

^{*} Optionen auf Anfrage


^{**} Beide Versionen mit Passfeder


iO 573 SE



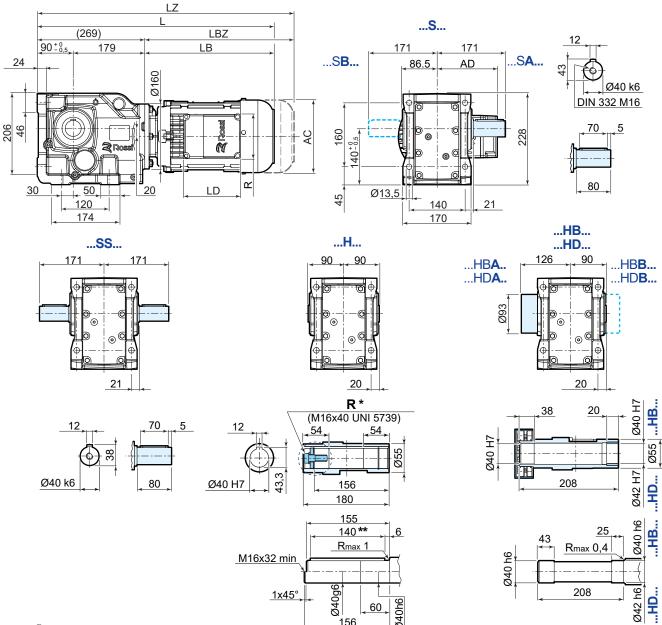




UT.C 2551

9	31	25 Rmax 0,4	*	Ø40 h6 HB
Ø40 h6	- F			
&_				
1	_	195	_	Ø42 h6
				45 1
				Q

		I	I	I	I	I	ı	I	ı	
	63	71	80	90S ²⁾	90L	100	112	132S ³⁾	132M	
AC	123	138	156	176	176	194	218	257	257	
AD	95	112	121	141	141	151	163	194	194	
LB	205	231	260	283	313	345	383	439	499	
LBZ	260	293	329	362	392	440	482	547	607	
L 1)	474	500	529	552	582	614	652	708	768	
LZ 1)	529	562	598	631	661	709	751	816	876	
LD	103	103	103	136	136	136	136	190	190	
R	86	86	86	106	106	106	106	148	148	


²⁾ Bei Motor HB3-HB3Z 90S 2, HB3-HB3Z 90S 4 Abmessungen wie Motorgröße 90L

¹⁾ S. auch Seite 80/81

Für Details Maschinenseite A u. B s. Seite 39

^{*} Optionen auf Anfrage

³⁾ Bei Motor HB3-HB3Z 132SB 2, HB3-HB3Z 132SC 2, HB3-HB3Z 132S 4 Abmessungen wie Motorgröße 132M ** Beide Versionen mit Passfeder

		ı	ı	ı		ı	ı	1	
	63	71	80	90S ²⁾	90L	100	112	132S 3) 4)	132M ⁴⁾
AC	123	138	156	176	176	194	218	257	257
AD	95	112	121	141	141	151	163	194	194
LB	205	231	260	283	313	345	383	439	499
LBZ	260	293	329	362	392	440	482	547	607
L 1)	474	500	529	552	582	614	652	708	768
LZ 1)	529	562	598	631	661	709	751	816	876
LD	103	103	103	136	136	136	136	190	190
R	86	86	86	106	106	106	106	148	148

Für Details Maschinenseite A u. B s. Seite 39

2635-23.03-1

153

Optionen auf Anfrage * Beide Versionen mit Passfeder

¹⁾ S. auch Seite 80/81

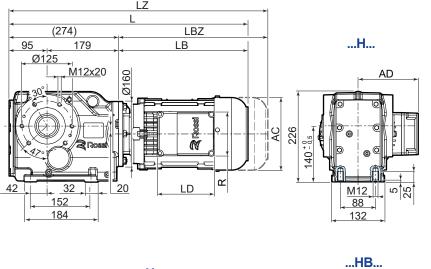
²⁾ Bei Motor HB3-HB3Z 90S 2, HB3-HB3Z 90S 4 Abmessungen wie Motorgröße 90L
³⁾ Bei Motor HB3-HB3Z 132SB 2, HB3-HB3Z 132SC 2, HB3-HB3Z 132S 4 Abmessungen wie Motorgröße 132M

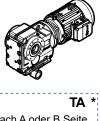
⁴⁾ Der Motor steht über die Montagefläche des Getriebefußes hinaus

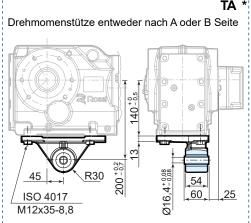
iO 673 FE...F625 ...S... LBZ 86,5 113 80 LB 179 ...S**B..**. ..SA UT.C 2553 Ø13,5 Ø160 Ø40 k6 DIN 332 M16 Ø180 70 M 140 α 80 LD 20 AD LZ ...HB... ...H... ...HD... ...HB**A...** ...HB**B...** ...H**A...** ...HDA... ...HD**B...** ...H**B...** 90 90 90 _23 126 Ø40 H7 ...HB... **R*** Ø40 H7 38 38 20 20 (M16x40 UNI 5739) 12 _₹54, Ø55 **Ø**55 Ø42 H7 Ø42 H7 208 156 208 Ø40 H7 180 155 HB...HB... Ø40 h6 140 ****** 25 6 Rmax 1 Rmax 0,4 Rmax 0,4 M16x32 min Ø40g6 Ø42 h6 Ø42 h6 208 <u>1x4</u>5° 208 Ø40h6 60 156 153 63 71 80 90S 2) 90L 100 112 132S 3) 132M AC 123 138 156 176 176 194 218 257 257 AD 95 112 121 141 141 151 163 194 194 LB 205 260 283 383 439 499 231 313 345 LBZ 329 392 482 260 293 362 440 547 607 L 1) 479 505 534 557 587 619 657 713 773 **LZ** 1) 534 567 603 636 666 714 756 821 881 LD 103 103 103 136 136 136 136 190 190 R 86 86 86 106 106 106 106 148 148

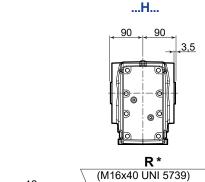
Rossi

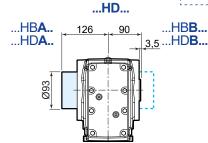
¹⁾ S. auch Seite 80/81

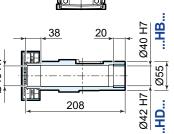

²⁾ Bei Motor HB3-HB3Z 90S 2, HB3-HB3Z 90S 4 Abmessungen wie Motorgröße 90L

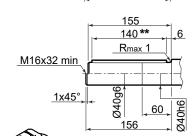

Für Details Maschinenseite A u. B s. Seite 39

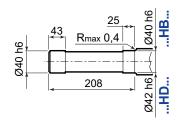

Optionen auf Anfrage

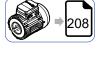

³⁾ Bei Motor HB3-HB3Z 132SB 2, HB3-HB3Z 132SC 2, HB3-HB3Z 132S 4 Abmessungen wie Motorgröße 132M Beide Versionen mit Passfeder










<u>156</u> 180

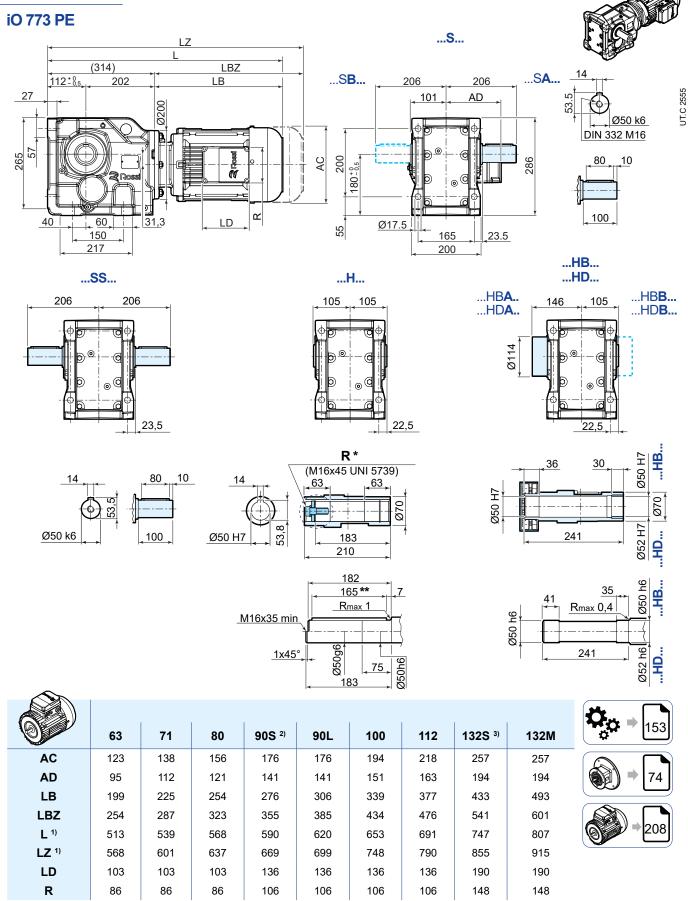
0	63	71	80	90S ²⁾	90L	100	112	132S ³⁾	132M
AC	123	138	156	176	176	194	218	257	257
AD	95	112	121	141	141	151	163	194	194
LB	205	231	260	283	313	345	383	439	499
LBZ	260	293	329	362	392	440	482	547	607
L 1)	479	505	534	557	587	619	657	713	773
LZ 1)	534	567	603	636	666	714	756	821	881
LD	103	103	103	136	136	136	136	190	190
R	86	86	86	106	106	106	106	148	148

²⁾ Bei Motor HB3-HB3Z 90S 2, HB3-HB3Z 90S 4 Abmessungen wie Motorgröße 90L

³⁾ Bei Motor HB3-HB3Z 132SB 2, HB3-HB3Z 132SC 2, HB3-HB3Z 132S 4 Abmessungen wie Motorgröße 132M

Ø55

Für Details Maschinenseite A u. B s. Seite 39

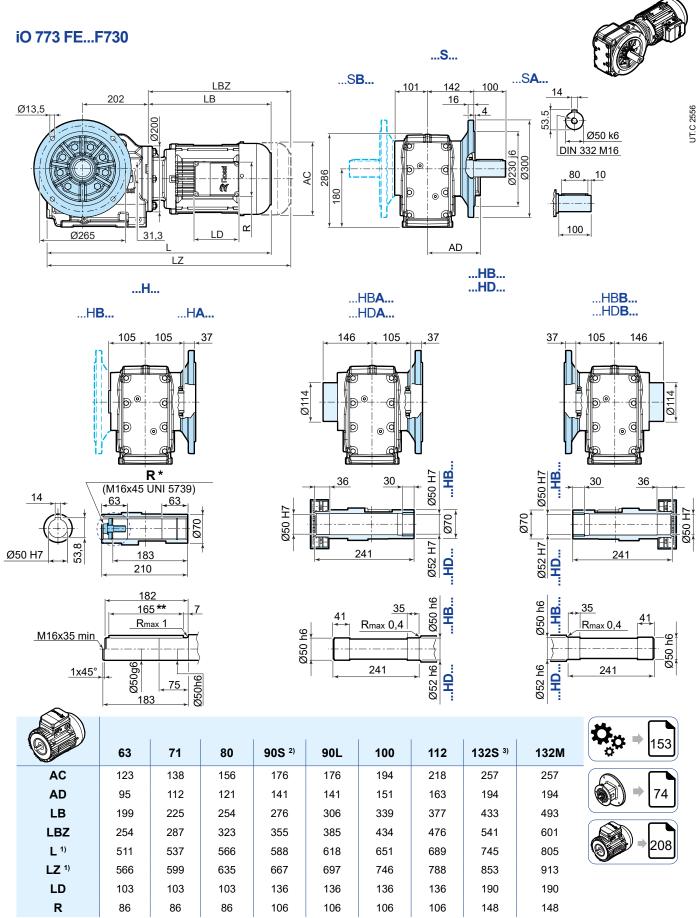

Ø40 H7

¹⁾ S. auch Seite 80/81

^{*} Optionen auf Anfrage

^{**} Beide Versionen mit Passfeder

12.5


¹⁾ S. auch Seite 80/81

²⁾ Bei Motor HB3-HB3Z 90S 2, HB3-HB3Z 90S 4 Abmessungen wie Motorgröße 90L

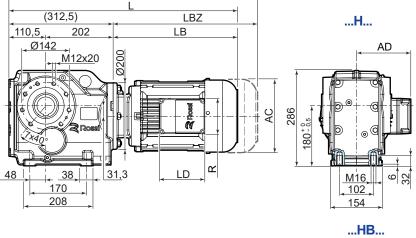
Für Details Maschinenseite A u. B s. Seite 39

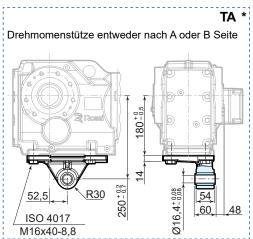
^{*} Optionen auf Anfrage

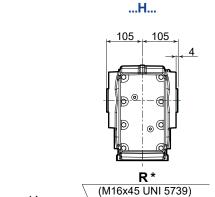
³⁾ Bei Motor HB3-HB3Z 132SB 2, HB3-HB3Z 132SC 2, HB3-HB3Z 132S 4 Abmessungen wie Motorgröße 132M ** Beide Versionen mit Passfeder

S. auch Seite 80/81
 Bei Motor HB3-HB3Z 90S 2, HB3-HB3Z 90S 4 Abmessungen wie Motorgröße 90L

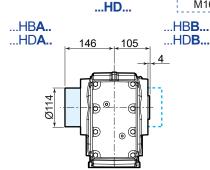
Für Details Maschinenseite A u. B s. Seite 39


** Beide Versionen mit Passfeder

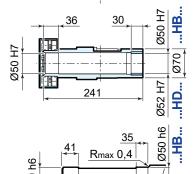

^{*} Optionen auf Anfrage


³⁾ Bei Motor HB3-HB3Z 132SB 2, HB3-HB3Z 132SC 2, HB3-HB3Z 132S 4 Abmessungen wie Motorgröße 132M

iO 773 SE


63

√63,


183 210 182

165 ****** Rmax 1

183

Ö	241	Ø52 h6		
90L	100	112	132S ³⁾	132
176	104	240	257	257

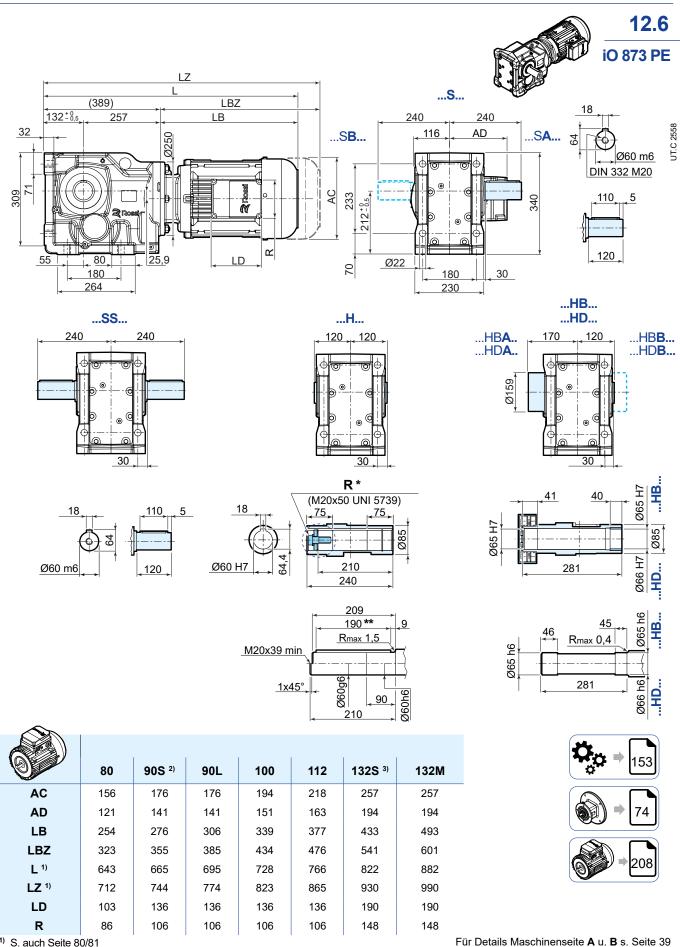
	63	71	80	90S ²⁾	90L	100	112	132S ³⁾	132M
AC	123	138	156	176	176	194	218	257	257
AD	95	112	121	141	141	151	163	194	194
LB	199	225	254	276	306	339	377	433	493
LBZ	254	287	323	355	385	434	476	541	601
L 1)	513	539	568	590	620	653	691	747	807
LZ 1)	568	601	637	669	699	748	790	855	915
LD	103	103	103	136	136	136	136	190	190
R	86	86	86	106	106	106	106	148	148

Ø50 H7

M16x35 min

1x45°

³⁾ Bei Motor HB3-HB3Z 132SB 2, HB3-HB3Z 132SC 2, HB3-HB3Z 132S 4 Abmessungen wie Motorgröße 132M


¹⁾ S. auch Seite 80/81

²⁾ Bei Motor HB3-HB3Z 90S 2, HB3-HB3Z 90S 4 Abmessungen wie Motorgröße 90L

Für Details Maschinenseite A u. B s. Seite 39

Optionen auf Anfrage

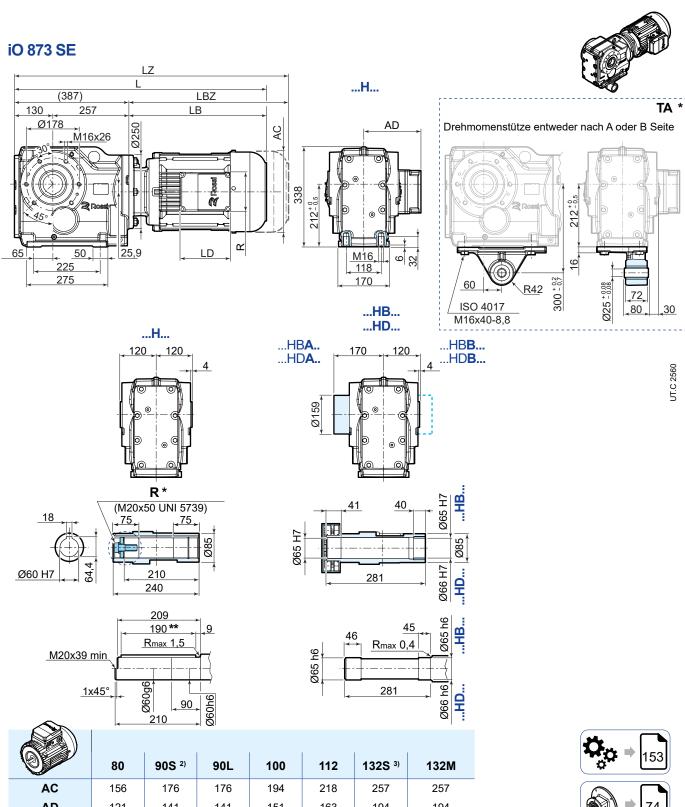
^{**} Beide Versionen mit Passfeder

¹⁾ S. auch Seite 80/81

²⁾ Bei Motor HB3-HB3Z 90S 2, HB3-HB3Z 90S 4 Abmessungen wie Motorgröße 90L

Optionen auf Anfrage ³⁾ Bei Motor HB3-HB3Z 132SB 2, HB3-HB3Z 132SC 2, HB3-HB3Z 132S 4 Abmessungen wie Motorgröße 132M * Beide Versionen mit Passfeder

iO 873 FE...F835 ...S... ...S**A..**. ...S**B...** LBZ 150 141 120 LB Ø17,5 5 Ø250 Ø60 m6 DIN 332 M20 Ø250 h6 Ø350 110 W 120 α LD LZ ...HB... ...HD... ...H... ...HB**B...** ...HB**A...** ...H**A...** ...HD**B...** ...HDA... 120 120 170 120 30 30 120 170 **R*** Ø65 H7 Ø65 H7 ...**HB**... 里 41 40 (M20x50 UNI 5739) 75 75 Ø82 Ø82 무 ZH 99Ø Ø66 H7 Ø60 H7 210 HD. 281 281 240 209 Ø65 h6 190 ** Ø65 h6 HB. 46 Rmax 1,5 Rmax 0,4 Rmax 0,4 Ø65 h6 M20x39 min Ø65 hö 990 Pe 281 Ø66 h6 <u>1x45</u>° 281 90 210 80 90S 2) 90L 100 112 132S 3) 132M AC 156 176 176 194 257 218 257 AD 121 141 141 151 163 194 194 LB 254 276 306 339 377 433 493 385 476 601 **LBZ** 323 355 434 541 L 1) 663 693 726 764 820 880 641 **LZ** 1) 710 742 772 821 863 928 988 LD 103 136 136 136 136 190 190 R 86 106 106 106 106 148 148


¹⁾ S. auch Seite 80/81

 ²⁾ Bei Motor HB3-HB3Z 90S 2, HB3-HB3Z 90S 4 Abmessungen wie Motorgröße 90L
 ³⁾ Bei Motor HB3-HB3Z 132SB 2, HB3-HB3Z 132SC 2, HB3-HB3Z 132SC 4 Abmessungen wie Motorgröße 132M

Für Details Maschinenseite A u. B s. Seite 39

^{*} Optionen auf Anfrage

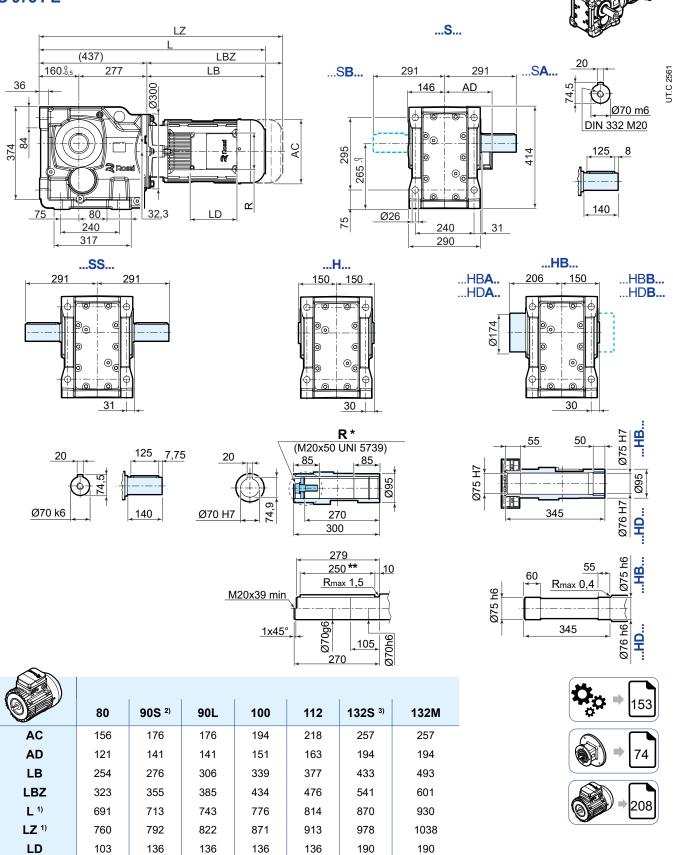
M ** Beide Versionen mit Passfeder

	80	90S ²⁾	90L	100	112	132S ³⁾	132M
AC	156	176	176	194	218	257	257
AD	121	141	141	151	163	194	194
LB	254	276	306	339	377	433	493
LBZ	323	355	385	434	476	541	601
L 1)	641	663	693	726	764	820	880
LZ ¹⁾	710	742	772	821	863	928	988
LD	103	136	136	136	136	190	190
R	86	106	106	106	106	148	148

³⁾ Bei Motor HB3-HB3Z 132SB 2, HB3-HB3Z 132SC 2, HB3-HB3Z 132S 4 Abmessungen wie Motorgröße 132M

¹⁾ S. auch Seite 80/81

²⁾ Bei Motor HB3-HB3Z 90S 2, HB3-HB3Z 90S 4 Abmessungen wie Motorgröße 90L


Für Details Maschinenseite A u. B s. Seite 39

^{*} Optionen auf Anfrage

^{**} Beide Versionen mit Passfeder

12.7

iO 973 PE

R

1) S. auch Seite 80/81

86

106

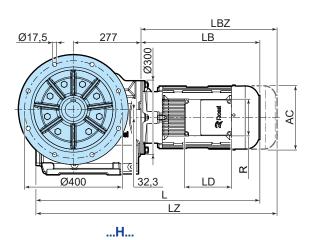
106

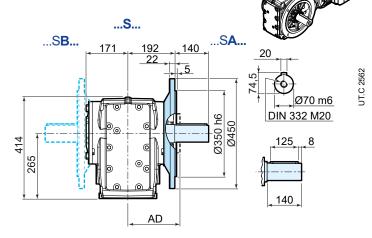
106

148

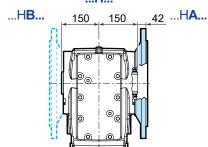
106

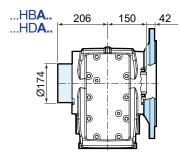
148

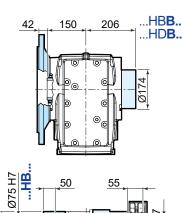

²⁾ Bei Motor HB3-HB3Z 90S 2, HB3-HB3Z 90S 4 Abmessungen wie Motorgröße 90L

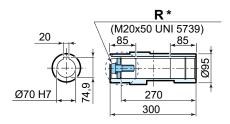

Für Details Maschinenseite A u. B s. Seite 39

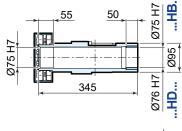
^{*} Optionen auf Anfrage

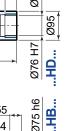

³⁾ Bei Motor HB3-HB3Z 132SB 2, HB3-HB3Z 132SC 2, HB3-HB3Z 132S 4 Abmessungen wie Motorgröße 132M ** Beide Versionen mit Passfeder

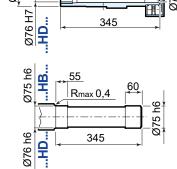

iO 973 FE...F945




...HB...







55

50

	-	2	279 250 °		10
M20x39 min	ſ <u>. </u>				
1x45°,	*	, Ø70g6	270	₄ 10	940ZØ

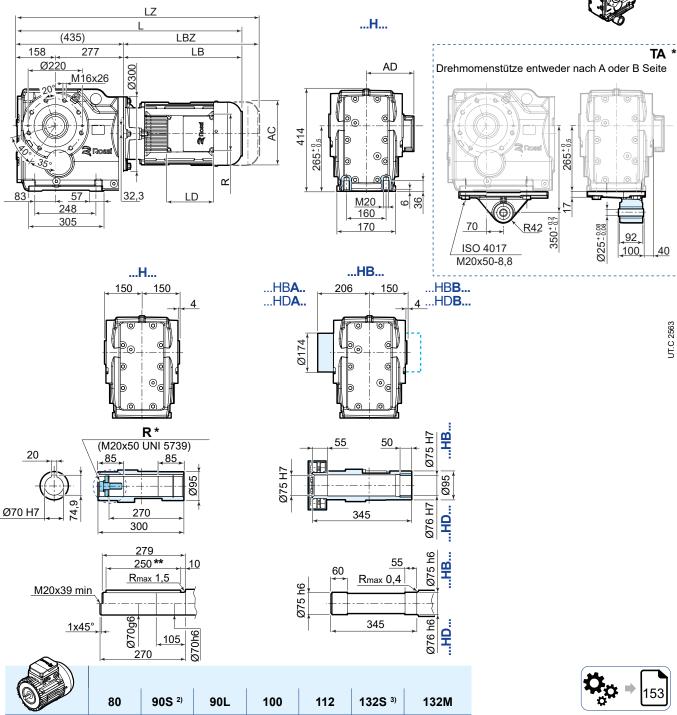
9(,	60	5. Rmax 0,4	1 7 7) Ø75 h6	HB
Ø75 h6						
Q;		<u> </u>	345		Joh 97⊗	HD

		l	l	I	I		
	80	90S ²⁾	90L	100	112	132S ³⁾	132M
AC	156	176	176	194	218	257	257
AD	121	141	141	151	163	194	194
LB	254	276	306	339	377	433	493
LBZ	323	355	385	434	476	541	601
L 1)	684	706	736	769	807	863	923
LZ 1)	753	785	815	864	906	971	1031
LD	103	136	136	136	136	190	190
R	86	106	106	106	106	148	148
1) 0 0 00	10.4						EA

²⁾ Bei Motor HB3-HB3Z 90S 2, HB3-HB3Z 90S 4 Abmessungen wie Motorgröße 90L

Optionen auf Anfrage

³⁾ Bei Motor HB3-HB3Z 132SB 2, HB3-HB3Z 132SC 2, HB3-HB3Z 132S 4 Abmessungen wie Motorgröße 132M ** Beide Versionen mit Passfeder


¹⁾ S. auch Seite 80/81

Für Details Maschinenseite A u. B s. Seite 39

iO

iO 973 SE



80 90S ²⁾ 90L 100 112 132S ³⁾ 132M	
150 170 170 101 010 057 057	
AC 156 176 176 194 218 257 257	
AD 121 141 141 151 163 194 194	
LB 254 276 306 339 377 433 493	
LBZ 323 355 385 434 476 541 601	
L 1) 689 711 741 774 812 868 928	
LZ 1) 758 790 820 869 911 976 1036	
LD 103 136 136 136 136 190 190	
R 86 106 106 106 106 148 148	

¹⁾ S. auch Seite 80/81

²⁾ Bei Motor HB3-HB3Z 90S 2, HB3-HB3Z 90S 4 Abmessungen wie Motorgröße 90L ³⁾ Bei Motor HB3-HB3Z 132SB 2, HB3-HB3Z 132SC 2, HB3-HB3Z 132S 4 Abmessungen wie Motorgröße 132M

Für Details Maschinenseite A u. B s. Seite 39

Optionen auf Anfrage

^{**} Beide Versionen mit Passfeder

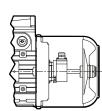
Leerseite

Asynchroner Drehstrommotor HB und Bremsmotor HBZ

Sektioninhalt

13.1	Kompakter asynchroner Drehstrommotor HB	210
	13.1.1 Allgemeine Eigenschaften	210
13.2	Technische Angaben des kompakten asynchronen Drehstrommotors HB	212
13.3	Kompakter asynchroner Drehstrom- Bremsmotor HBZ	218
	13.3.1 Allgemeine Eigenschaften	218
	13.3.2 Bremseigenschaften	217
13 4	Technische Angaben des kompakten asynchronen Drehstrom-Bremsmotors HBZ	210

કો<u>ર</u>ીકે


13.1

Kompakter asynchroner Drehstrommotor HB

13.1.1 Allgemeine Eigenschaften

- Isolationsklasse F, Übertemperaturklasse B;
- Paarungstoleranzen nach "Präzisionsklasse";
- Schutzart IP 55:
- · für Betrieb mit Frequenzumrichter geeignet;
- asynchroner Elektro-Drehstrommotor mit geschlossenem Käfigläufer und Außenbelüftung (Kühlsystem IC 411 mit Kühlerlüfter, der mit der Motorwelle verkeilt ist);
- Einzelpolarität 2, 4 oder 6-polig;
- besonders solide (elektrische und mechanische) Bauweise; reichliche Bemessung der Lager;
- eingehend studierte elektromagnetische Bemessung, um eine hohe Beschleunigungsfähigkeit (hohe Schalthäufigkeit) zu erreichen sowie eine gleichmäßige Anlaufcharakteristik (flache "sattelförmige" Kennlinie);
- metallischer Klemmenkasten;
- umfangreiche Reihe von Sonderausführungen für jede Erfordernis (Fremdlüfter, Fremdlüfter und Drehgeber, Schutzarten höher als IP 55, usw.).

Normal

Drehgeber

UT.C 1374

Leistung gilt bei Dauerbetrieb (S1) bezogen auf Nennspannung und -frequenz; Umgebungstemperatur -15 \div 40 $^{\circ}$ C und max Höhe 1000 m.

Motorgehäuse aus Leichtmetall Druckguss.

Antriebsseitiger Flansch und nicht-antriebsseitiger Schild aus Gusseisen oder Leichtmetall.

Schilde und Flansche mit «gelagerten» Schildbefestigungen und am Gehäuse durch «feste» Paarungen eingebaut .

Kugellager, axial vorgespannt mit Lebensdauerschmierung, saubere Umgebung vorausgesetzt; Vorrspannfeder.

Antriebsseitige Motorwelle axial eingespannt.

Rückseitige Gewindebohrung für Wellenabnahme serienmäßig für Größen ≥ 90 ... 132.

Lüfterabdeckung aus Stahlblech.

Kühlungslüfter mit radialen Flügeln aus Thermoplast.

Klemmenkasten aus Leichtmetall (gehäuseeigen mit Sollbruchstellen zum Kabeleintritt, zwei Vorbereitungen je Seite, eine für den Leistungskabel und eine für Hilfsvorrichtungen).

Linke Seitenposition von der Nicht-Antriebsseite gesehen (Pos. TB0 s. Seite 40); auf Anfrage sind andere Positionen zur Verfügung.

Klemmenbrettdeckel aus Leichtmetall, druckgegossen.

Klemmenkasten mit 6 Klemmen (9 Klemmen bei Versorgunngsspannung YY230 Y460 60 Hz;

Erdschlussklemme im Klemmenkasten; für den Einbau zweier weiteren Erdschlussklemmen am Gehäuse vorbereitet.

Druckgegossener **Käfigläufer** aus Aluminium.

Statorwicklung mit Kupferisolation H, mit doppelter Schicht isoliert, Tränkung mit Kunstharz Klasse H; andere Werkstoffe Klassen F und H für ein Isolationissystem Klasse F.

Werkstoffe und Tränkung für tropenfesten Einsatz ohne weitere Zusatzbehandlung ausgelegt.

Dynamisches Auswuchten des Käfigläufers: Vibrationsgrad nach Normklasse A. Die Motoren werden mit halber Passfeder im Wellenende gewuchtet.

Lackierung mit wasserlöslichem Decklack, Farbe Blau RAL 5010 DIN 1843, für normale Anwendung in Industriestätten geeignet (Korrosivitätsklasse C3 ISO 12944-2).

Für Sonderausführungen und Zubehör s. Seite 41.

13.2

Technische Angaben des kompakten asynchronen Drehstrommotors HB

2-polig - 3000 min⁻¹ IP55 IC411 Isolationsklasse F Übertemperaturklasse B

IE3 400 V - 50Hz ErP

P _N	Motor		n _N	M _N	I _N	cos φ		η IE3		M _s /M _n	M _{max} / M _N	I _s /I _N	J_o	Z ₀	∰ kg
kW			min ⁻¹	N m	A 400 V		100%	60034 75%	- 2-1 50%				kg m²	Anl/h	
1,1	HB3 80 B	2	2875	3,7	2,3	0,84	82,7	83,2	81	3,9	3,9	7,7	0,0013	2500	11,6
1,5	HB3 90 S	2	2890	4,97	2,9	0,88	84,2	84,5	83,3	3,3	3,6	7,9	0,0019	1800	16
2,2	HB3 90 LA	2	2890	7,3	4,4	0,85	85,9	86,2	85,1	3,9	4,4	8,4	0,0023	1600	18
3	HB3 100 LA	2	2930	9,8	6,2	0,80	87,1	87,2	85,2	4,2	5,1	10,1	0,0044	1500	24
4	HB3 112 M	2	2940	13	7,6	0,87	88,1	88,2	86,7	2,8	4,2	9,8	0,0074	1400	33
5,5	HB3 132 S	2	2960	17,8	10,4	0,85	89,2	88,6	85,6	5,2	6,1	12,7	0,0174	710	53
7,5	HB3 132 SB	2	2960	24,3	14	0,85	90,1	89,9	87,3	5,7	6,5	13,6	0,0215	710	61,5

4-polig - 1500 min⁻¹ IP55 IC411 Isolationsklasse F Übertemperaturklasse B

IE2 400 V - 50Hz **ErP**

P _N	Motor			n _N	M _N	I _N	cos φ	η IE2 IEC 60034-2-1			M _s /M _N	M _{max} /M _N	I _s / I _N	J_o	Z ₀	⊖ kg
kW				min ⁻¹	N m	A 400 V		100%	75%	50%				kg m²	Anl/h	
0,12	HB2	63 A	4	1370	0,84	0,52	0,61	55	52,2	48,5	2,2	2,5	2,7	0,0002	12500	3,9
0,18	HB2	63 B	4	1360	1,26	0,7	0,63	58,9	56,1	50	2,1	2,3	2,8	0,0003	12500	4,5
0,25	HB2	71 A	4	1400	1,71	0,8	0,68	66,7	66	60,4	2,2	2,5	3,6	0,0007	10000	5,7
0,37	HB2	71 B	4	1400	2,52	1,1	0,68	71,4	70,9	67,8	2,5	2,8	4	0,0009	10000	6,6
0,55	HB2	80 A	4	1405	3,74	1,38	0,78	73,8	74	70,1	2,5	3,58	4,9	0,0019	8000	7,6

4-polig - 1500 min⁻¹ IP55 IC411 Isolationsklasse F Übertemperaturklasse B

IE3 400 V - 50Hz **ErP**

P_{N}	Motor		n _N	M _N	I _N	cos φ	η IE3		M _s /M _n	M_{max}/M_{N}	I _s / I _N	J_o	Z ₀	∰ kg	
					_		IEC	60034	-2-1						<u>a</u>
kW			min ⁻¹	N m	A 400 V		100%	75%	50%				kg m²	Anl/h	
0,75	HB3 80) B 4	1410	5,1	2	0,67	82,5	82,2	80,1	3,2	3,3	5,3	0,0018	6800	12
1,1	HB3 90) S 4	1420	7,4	2,4	0,80	84,1	84,8	83,6	3,0	3,5	6,4	0,0041	3150	18,5
1,5	HB3 90) L 4	1430	10,1	3,3	0,78	85,3	86,1	85	3,1	3,7	6,7	0,0043	3000	19
2,2	HB3 10	00 LA 4	1440	14,6	4,8	0,76	86,7	87,2	85,5	3,5	4,4	7,4	0,0076	3000	26
3 (1)	HB3 11	12 MA 4	1450	19,8	6,1	0,80	88,7	88,6	87,3	3,5	4,4	8,8	0,013	2000	33
4	HB3 11	12 M 4	1450	26,3	8,5	0,77	88,6	89,2	88	3,7	4,6	9,0	0,014	1800	35
5,5	HB3 13	32 S 4	1470	35,8	12	0,74	89,6	89,5	87,6	4,5	5,0	9,1	0,0357	900	58
7,5	HB3 13	32 M 4	1460	49	15,2	0,79	90,4	90,4	89,6	3,9	4,2	8,4	0,0432	900	66
9,2 (1)	HB3 13	32 MB 4	1460	60,2	19,2	0,76	91	90,8	90,1	4,0	4,1	8,5	0,0448	800	68,5

⁽¹⁾ Nicht genormte Leistung oder Entsprechung Leistung-Motorgröße.

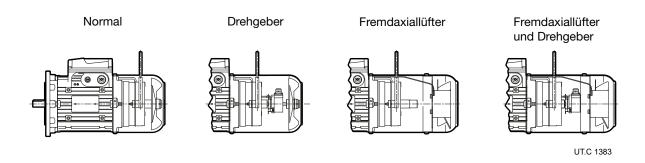
6-polig - 1000 min⁻¹ IP55 IC411 Isolationsklasse F Übertemperaturklasse B

IE2 400 V - 50Hz ErP

P _N	Motor			n _N	M _N	I _N	cos φ	η IE2 IEC 60034-2-1			M _s /M _N	M_{max}/M_{N}	I _s / I _N	J_o	Z ₀	∰ kg
kW				min ⁻¹	N m	A 400 V		100%	75%	50%				kg m²	Anl/h	
0,12	HB2	63 B	6	910	1,26	0,57	0,57	53,7	49,5	41,1	2,7	2,8	2,5	0,0005	12500	4,5
0,18	HB2	71 A	6	910	1,89	0,62	0,68	61,6	59,8	51,9	2,4	2,5	3,2	0,0009	12500	6
0,25	HB2	71 B	6	900	2,65	0,85	0,68	62,4	60,7	54	2,5	2,6	3,2	0,0012	11200	6,8
0,37	HB2	80 A	6	930	3,8	1,2	0,67	66,8	65,4	58,4	2,5	2,6	3,6	0,0019	9500	8
0,55	HB2	80 B	6	920	5,7	1,68	0,68	69,8	69,7	64,9	2,5	2,6	3,7	0,0025	9000	9,6

6-polig - 1000 min⁻¹ IP55 IC411 Isolationsklasse F Übertemperaturklasse B

IE3 400 V - 50Hz ErP


P_{N}	Motor		n _N	M _N	I _N	cos φ	η IE3		M_s/M_N	M_{max}/M_{N}	I _s /I _N	J_o	Z ₀	⊖ kg		
								IEC	60034	-2-1						[.,9]
kW				min ⁻¹	N m	A 400 V		100%	75%	50%				kg m²	Anl/h	
0,75	HB3	90 S	6	930	7,7	2	0,72	78,9	76	73	2,1	2,9	4,9	0,0056	6000	15,5
1,1	НВ3	90 L	6	930	11,3	2,8	0,72	81	79	77	2,6	3	5,1	0,0071	5600	19,5
1,5	HB3	100 LA	6	950	15,1	3,5	0,75	82,5	82,4	80,4	2,5	3,4	6,5	0,013	3000	26
2,2	НВ3	112 M	6	960	21,9	5,1	0,73	84,3	85	83,2	2,3	3,5	6,9	0,0202	2800	33
3	HB3	132 S	6	970	29,5	6,9	0,72	85,6	88	86,3	2,4	3,8	7,6	0,0435	1400	54

13.3

Kompakter asynchroner Drehstrom- Bremsmotor HBZ

11.3.1 Allgemeine Eigenschaften

- Isolationsklasse F, Übertemperaturklasse B;
- Paarungstoleranzen nach "Präzisionsklasse";
- Schutzart IP 55;
- für Betrieb mit Frequenzumrichter geeignet;
- Asynchroner Elektro-Drehstrombremsmotor mit Gs-Bremse (mit ruhestrombetätigter Bremse) mit
 Doppelbremsfläche und Bremsmoment proportional zum Motordrehmoment (normalerweise M_r ≈ 2 M_N);
- **Einzelpolarität** 2, 4 oder 6-polig;
- **Besonders solide** (elektrische und mechanische) **Bauweise**, um den wechselnden Wärme-, Drehbeanspruchungen bei Anlauf und Bremsung standzuhalten; reichliche Bemessung der Lager;
- Eingehend studierte elektromagnetische Bemessung, um eine hohe Beschleunigungsfähigkeit (hohe Schalthäufigkeit) sowie eine gleichmäßige Anlaufcharakteristik zu erreichen;
- Grosser metallischer Klemmenkasten, Mehrspannungsgleichrichter, einzige Bremsspule, für Spannung immer koordiniert mit derjenigen des Motors (sowohl Δ als auch Y);
- Höchste Geräuscharmut und Betriebsprogression (sowohl beim Anlauf als auch beim Bremsen) dank der verzögerten Wirkung (typisch für Gs-Bremse) auf grund des leichteren und langsameren Bremsankers: Der Motor läuft leicht gebremst an, d.h. mit erhöhter Progression. Gute Lüft- und Bremseigenschaften. Noch kürzere Schaltzeiten als Option beim Bremsen durch gleichstromseitiges Abschalten;
- · Hohe Bremsleistung;
- **Umfangreiche Reihe von Sonderausführungen** für jede Erfordernis (Fremdlüfter, Fremdlüfter und Drehgeber, Schutzarten höher als IP 55, usw.);
- Geeignet für Anwendungen mit regelmäßigen und geräuscharmen Bremsungen und Anläufen bei gleichzeitig schnellen und präzisen Bremsungen mit vielen Betätigungen

Optimierte und wenig sattelförmige «Drehmoment-Drehzahl»- **Kennlinien** für den Transport (waagrechte und senkrechte Fahrantriebe, Drehung), ohne Spitzen in der übersynchronen Zone und sorgfältig dosierter Mittelwert.

Leistung gilt bei Dauerbetrieb (S1) und bezogen auf Nennspannung und -frequenz, Umgebungstemperatur -15 ÷ 40 °C und max Höhe 1 000 m.

Gehäuse aus Leichtmetall Druckguss.

Antriebsseitiger Flansch und nicht-antriebsseitiger Schild aus Gusseisen oder Leichtmetall.

Schilde und Flansche mit «gelagerten» Schildbefestigungen und am Gehäuse durch «feste» Paarungen eingebaut **Kugellager**, **axial vorgespannt** mit Lebensdauerschmierung, saubere Umgebung vorausgesetzt; Vorrspannfeder.

Motorwelle aus Stahl, am antriebsseitigen Schild axial eingespannt.

Kopfseitige Gewindebohrung für Wellenabnahme.

Lüfterabdeckung aus Stahlblech.

Kühlungslüfter mit radialen Flügeln aus Thermoplast.

Klemmenkasten aus Leichtmetall (gehäuseeigen mit Sollbruchstellen zum Kabeleintritt, zwei Vorbereitungen je Seite, eine für den Leistungskabel und eine für Hilfsvorrichtungen). Linke Seitenposition von der Nicht-Antriebsseite gesehen (Pos. TB0 s. Seite 40); auf Anfrage andere Positionen.

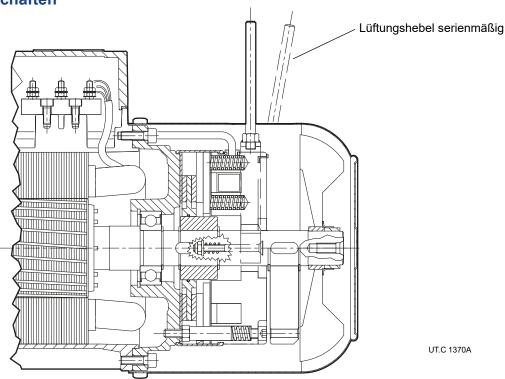
Klemmenbrettdeckel aus Leichtmetall Druckguss.

Klemmenkasten mit 6 Klemmen (9 Klemmen bei Versorgungsspannung YY230 Y460 60 Hz).

Erdschlussklemme im Klemmenkasten; für den Einbau zweier weiteren Erdschlussklemmen am Gehäuse vorbereitet. **Bremsversorgung:** mit am Klemmenkasten befestigtem Gleichrichter mit 2 Anschlussklemmen mit Kabelschuh zur Gleichrichterversorgung, 2 für Außenkontakt schneller Bremsung; Möglichkeit **einer direkten Bremsversorgung** aus dem Klemmenbrett (Lieferbedingungen) oder **aus separatem Netz** (zu verwenden für: zweifach polumschaltbare Motoren, Motorbetrieb mit Frequenzumrichter, erforderte separate Motor- und Bremsbedienung, usw.). Die Bremse kann auch bei stillem Motor für eine unbegrenzte Zeit versorgt werden.

Druckgegossener Käfigläufer aus Aluminium.

Statorwicklung mit Kupferisolation H, mit doppelter Schicht isoliert, Tränkung mit Kunstharz Klasse H; andere Werkstoffe Klassen F und H für ein Isolationissystem Klasse F.


Dynamisches Auswuchten des Käfigsläufers: Vibrationsgrad nach Normklasse A. Die Motoren werden mit halber Passfeder im Wellenende gewuchtet.

Lackierung mit wasserlöslichem Decklack, Farbe Blau RAL 5010 DIN 1843, für normale Anwendung in Industriestätten geeignet (Korrosivitätsklasse C3 ISO 12944-2)

Für Sonderausführungen und Zubehör s. Seite 41.

13.3.2 Bremseigenschaften

Federgespannte elektromagnetische Bremse (mit ruhestrombetätigter Bremse), mit **Gs**-Ringspule, doppelter Bremsfläche und einem dem Motordrehmoment proportionierten stufenweise einstellbaren Bremsmoment (normalerweise $M_r \approx 2~M_{_N}$). **Höchste Geräuscharmut und Betriebsprogression** (sowohl beim Anlauf als auch beim Bremsen) dank der verzögerten Wirkung (typisch für Gs-Bremse) auf grund des leichteren und langsameren Bremsankers: Der Motor läuft leicht gebremst an, d.h. mit erhöhter Progression. **Gute Lüft- und Bremseigenschaften**. Noch kürzere Schaltzeiten als Option (beim Lüften durch Schnellgleichrichter, beim Bremsen durch gleichstromseitiges Abschalten); hohe Bremseleistung.

Umfangreiche Reihe von Ausführungen (Drehgeber, Fremdaxiallüfter, Fremdaxiallüfter und Drehgeber, zweites Wellenende, usw.);

Geeignet für Anwendungen mit regelmäßigen und geräuscharmen Bremsungen und Anläufen bei gleichzeitig schnellen und präzisen Bremsungen mit vielen Betätigungen.

Wenn der Elektromagnet im unversorgten Zustand liegt, drückt der von den Federn geschobene Bremsanker die Bremsscheibe am rückseitigen Schild durch Herstellung des Bremsmoments auf der Bremsscheibe und, folglich, auf der Motorwelle, auf welcher sie aufgekeilt ist; bei der Bremsversorgung zieht der Elektromagnet den Bremsanker zu sich und befreit die Bremsscheibe und die Motorwelle.

Haupteigenschaften:

- Mehrspannungsgleichrichter (serienmäßig), derart ausgelegt für die Verwaltung von einer einzigen Bremsspule mit Versorgungsspannung immer koordiniert mit der Standardspannung des HBZ-Motors (Δ 230 Y400 V ± 5% 50 Hz und gleichzeitig auch Δ 277 Y480 V ± 5% 60 Hz); andere Spannungen auf Anfrage;
- Versorgung des Gleichrichters direkt am Motorklemmenbrett abgenommen oder gleichgültig durch separates Netz;
- Bremsmoment einstellbar durch Federanzahländerung;
- Isolationsklasse F, Übertemperaturklasse B;
- **Bremsscheibe**, auf die Keilnabe verschiebend: mit einschichtigem Kern aus Stahl und doppeltem Bremsbelag mit Mittelreibungskoeffizient für geringen Verschleiss;
- Bremsanker aus zwei Teilen für größere Betriebsschnelligkeit und Geräuscharmut;
- staub- und wasserdichte Hülle und V-ring sowohl zum Schutz vor Fremdstoffeintritt in die Bremse als auch vor Emission des Verschleißstaubs des Bremsbelags an die Umgebung;
- Position der Handlüftung mit automatischer Rückstellung (serienmäßig) und abnehmbare Hebelstange; Position der Handlüftung bei dem Klemmenkasten; auf Anfrage sind weitere Positionen zur Verfügung. Rossi S.p.A. rückfragen;
- für andere funktionstechnische Eigenschaften s. folgende Tabelle.

Für Sonderausführungen und Zubehör s. Seite 41.

Der Motor ist immer **mit Gleichrichter hoher Zuverläßigkeit** auf Klemmenkasten **befestigt** und mit geeigneten Verbindungsklemmen ausgerüstet (2 für direkte oder separate Gleichrichterversorgung vom Motorklemmenbrett; 2 für Aussenkontakt zur schnellen Bremsung).

Die **RM1**⁽¹⁾ Mehrspannungsgleichrichter (für Bremsen 12 ... 14 serienmäßig geliefert) und **RM2**⁽¹⁾ (für Bremsen 05 ... 07 serienmäßig geliefert) sind DS/Gs-Versorgungsvorrichtungen mit einer kontrollierter Ganzwellenbrücke **zur Lieferung eines konstanten Spannungswerts unabhängig von der Antriebsspannung** ausgerüstet.

Die Gs-Bremse ist für folgende Spannungen geeignet:

Bereich 110 ÷ 440 V DS (für Bremsgrößen 12 ÷ 15) Bereich 200 ÷ 440 V DS (für Bremsgrößen 06S ... 07)

ohne dass die Spule gewechselt werden muss und ist daher auch immer auf beide Motorspannungen abgestimmt. Im Versorgungsbereich 200 bis 440 VDS verfügt der Gleichrichter zusätzlich über eine integrierte Beschleunigungsfunktion (für die ersten 400 ms wird eine höhere Spannung als die Nennspannung an die Bremsspule angelegt, wodurch die Bremse schneller gelüftet werden kann).

Außerdem, verglichen mit einem konventionellen Gleichrichter, erlaubt der Mehrspannungsgleichrichter auch folgende Vorteile zu haben:

- konstante Bremsleistungen (da die Abtriebsspannung bei einem vorbestimmten Wert unabhängig von den Versorgungsspannungsschwankungen ist);
- kleinere Spannung (75 V Gs) bei der Bremslüftung (kleinere energetische Aufnahme, kleinere Erwärmung und kleinerer Bremsverzug).

Beide Gleichrichtermodelle (RM1, RM2) können sowohl auf der DS-Seite (für den geräuscharmsten Betrieb) als auch auf DS- und Gs-Seite (für schnellere Bremswirkung) ein- und ausgeschaltet werden, da Varistoren zum Schutz der Dioden, des Elektromagnets und des Öffnungskontakts auf Gs-Seite integriert sind.

Hauptfuntionseigenschaften der Bremse

Die Ist-Werte können je nach Umgebungstemperatur und -feuchtigkeit, Bremstemperatur sowie Verschleißzustand des Bremsbelags hiervon leicht abweichen

	Größe M Bremse			M_{f}		Aufr	nahme		Ve	rzug (3)	Lufts	spalt	W ₁ ⁽⁶⁾	C _{max} (7)		W _{max} (8)	
Brem	(2)	ße	2 Feder N m	4 Feder N m	6 Feder N m	V DS	A D	W	Lüftung t, (4) ms	Bren t ₂ ms	nsung $t_2^{(5)}$ Gs) ms	m	m	MJ/mm	mm	Bre	msunge	en/h
							max					min	max			10	100	1000
BZ 12	RM1	63 71	1,75	3,5	-	110 ÷ 440	0,09	9	20	100	10	0,25	0,40	70	5	4500	1120	160
BZ 53,13	RM1	71 80	2,5	5	7,5	110 ÷ 440	0,14	12	32	120	10	0,25	0,40	90	5	5600	1400	200
BZ 04, 14	RM1	80 90	5	11	16	110 ÷ 440	0,20	16	45	150	10	0,30	0,45	125	5	7500	1900	265
BZ 05, 15	RM2	90 100 112	13	27	40	110 ÷ 440	0,26	24	63	220	15	0,30	0,45	160	5	10000	2500	355
BZ 06 S	RM2	112	25	50	75	200 ÷ 440	0,28	30	90	300	30	0,35	0,55	220	5	14000	3550	500
BZ 56	RM2	132 S	37	75	-	200 ÷ 440	0,28	50	90	224	20	0,35	0,55	224	4,5	14000	3550	500
BZ 06	RM2	132 S, M	50	100	-	200 ÷ 440	0,28	50	90	224	20	0,35	0,55	224	4,5	14000	3550	500
BZ 07	RM2	132 MB	50	100	150	200 ÷ 440	0,34	65	125	280	25	0,40	0,60	315	4,5	20000	5000	710

⁽¹⁾ Die RM1- und RM2-Mehrspannungsgleichrichter sind patentierte Vorrichtungen.

⁽²⁾ Standardgleichrichter, serienmäßig geliefert; die Stopzeit muss zwischen 2,5 s ÷ 3,5 s umgefasst werden. Ggf. Rossi S.p.A. rückfragen,

 $^{^{(3)}}$ Werte gültig bei $\rm M_{\it fmax}, \, mittlerem \, Luftspalt, \, Nennversorgungsspannung.$

⁽⁴⁾ Bremslüftzeit durch serienmäßigen Gleichrichter und, für RM1, mit Versorgungsspannung 200 V DS.

⁽⁵⁾ Bremsverzug erlangen durch separate Bremsversorgung und Ausschaltung auf DS-Seite des Gleichrichters (t2) oder auf DS- und Gs-Seite (t2 Gs). Bei direkter Versorgung aus Motorklemmenbrett erhöhen die t2-Werte um ungefähr das 2,5-fache derjenigen auf der Tabelle.

⁽⁶⁾ Reibungsarbeit für 1 mm Verschleiß der Bremsscheibe. (Mindestwert für Schwereinsatz, der Ist-Wert ist normalerweise größer).

⁽⁷⁾ Maximale Abnutzung der Bremsscheibe.

⁽⁸⁾ Maximale Reibungsarbeit bei jedem Bremsvorgang.

13.4

Technische Angaben des kompakten asynchronen Drehstrom-Bremsmotors HBZ

2-polig - 3000 min⁻¹ IP55 IC411 Isolationsklasse F Übertemperaturklasse B

IE3 400 V - 50Hz **ErP**

P _N	Moto	or	n _N	M _N	I _N	cos φ	η IE3 IEC 60034-2-1		M _s /M _N	M _{max} /M _N	I_s/I_N	J ₀	Bremse	M_{f}	Z ₀	∰ kg	
kW			min ⁻¹	N m	A 400V		100%						kg m²		N m	Anl/h	
1,1	HB3Z 80 B	3 2	2875	3,7	2,3	0,84	82,7	83,2	81	3,9	3,9	7,7	0,0015	BZ04	11	2500	15,5
1,5	HB3Z 90 S	2	2890	4,97	2,9	0,88	84,2	84,5	83,3	3,3	3,6	7,9	0,0021	BZ14	11	1800	20
2,2	HB3Z 90 L	.A 2	2890	7,3	4,4	0,85	85,9	86,2	85,1	3,9	4,4	8,4	0,0027	BZ05	27	1600	24
3	HB3Z 100	LA 2	2930	9,8	6,2	0,80	87,1	87,2	85,2	4,2	5,1	10,1	0,0048	BZ15	27	1500	30
4	HB3Z 112	M 2	2940	13	7,6	0,87	88,1	88,2	86,7	2,8	4,2	9,8	0,0078	BZ15	27	1400	39
5,5	HB3Z 132	S 2	2960	17,8	10,4	0,85	89,2	88,6	85,6	5,2	6,1	12,7	0,0184	BZ06	50	710	64
7,5	HB3Z 132	SB 2	2960	24,3	14	0,85	90,1	89,9	87,3	5,7	6,5	13,6	0,0225	BZ06	50	710	72,5

4-polig - 1500 min⁻¹ IP55 IC411 Isolationsklasse F Übertemperaturklasse B

IE2 400 V - 50Hz ErP

P _N	Motor		n _N	M _N	I _N	cos φ		η IE2		$M_{\rm S}/M_{\rm N}$	M_{max}/M_{N}	I _s /I _N	J_o	Bremse	M_{f}	Z ₀	∰ kg
kW			min ⁻¹	N m	A 400V		IEC 100%	60034 75%	-2-1 50%				kg m²		N m	Anl/h	
0,12	HB2Z 63 A	4	1370	0,84	0,52	0,61	55	52,2	48,5	2,2	2,5	2,7	0,0003	BZ12	1,75	12500	5,7
0,18	HB2Z 63 B	4	1360	1,26	0,7	0,63	58,9	56,1	50	2,1	2,3	2,8	0,0004	BZ12	3,5	12500	6,3
0,25	HB2Z 71 A	4	1400	1,71	0,8	0,68	66,7	66	60,4	2,2	2,5	3,6	0,0008	BZ53	5	10000	8,4
0,37	HB2Z 71 B	4	1400	2,52	1,1	0,68	71,4	70,9	67,8	2,5	2,8	4	0,0010	BZ53	5	10000	9,3
0,55	HB2Z 80 A	4	1405	3,74	1,38	0,78	73,8	74	70,1	2,5	3,58	4,9	0,0019	BZ04	11	8000	11,5

4-polig - 1500 min⁻¹ IP55 IC411 Isolationsklasse F Übertemperaturklasse B

IE3 400 V - 50Hz **ErP**

P_{N}	Motor		n _N	M _N	I _N	cos φ		η IE3		M_s/M_N	M_{max}/M_{N}	I _s /I _N	J_o	Bremse	M _f	\mathbf{z}_{o}	∰ kg
kW			min ⁻¹	N m	A 400V		100%	60034 75%	-2-1 50%				kg m²		N m	Anl/h	[,,8]
0,75	HB3Z 80 B	4	1410	5,1	2	0,67	82,5	82,2	80,1	3,2	3,3	5,3	0,0020	BZ04	11	6800	16
1,1	HB3Z 90 S	4	1420	7,4	2,4	0,80	84,1	84,8	83,6	3,0	3,5	6,4	0,0043	BZ14	16	3150	22,5
1,5	HB3Z 90 L	4	1430	10,1	3,3	0,78	85,3	86,1	85	3,1	3,7	6,7	0,0047	BZ05	27	3000	25
2,2	HB3Z 100 LA	4	1440	14,6	4,8	0,76	86,7	87,2	85,5	3,5	4,4	7,4	0,0080	BZ15	40	3000	32
3 (1)	HB3Z 112 MA	4	1450	19,8	6,1	0,80	88,7	88,6	87,3	3,5	4,4	8,8	0,0130	BZ15	40	2000	39
4	HB3Z 112 M	4	1450	26,3	8,5	0,77	88,6	89,2	88	3,7	4,6	9,0	0,0150	BZ06 S	75	1800	44
5,5	HB3Z 132 S	4	1470	35,8	12	0,74	89,6	89,5	87,6	4,5	5,0	9,1	0,0367	BZ56	75	900	69
7,5	HB3Z 132 M	4	1460	49	15,2	0,79	90,4	90,4	89,6	3,9	4,2	8,4	0,0442	BZ06	100	900	77
9,2 (1)	HB3Z 132 MB	4	1460	60,2	19,2	0,76	91	90,8	90,1	4,0	4,1	8,5	0,0470	BZ07	150	800	80,5

⁽¹⁾ Die Leistung ist für die entsprechende Motorgröße nicht genormt

6-polig - 1000 min⁻¹ IP55 IC411 Isolationsklasse F Übertemperaturklasse B

IE2 400 V - 50Hz ErP

P _N	Мо	tor		n _N	M _N	I _N	cos φ		η IE2		$M_{\rm s}/M_{\rm N}$	M_{max}/M_{N}	I _s / I _N	J_o	Bremse	M_{f}	z ₀	∰ kg
kW				min ⁻¹	N m	A 400V		IEC 100%	60034 75%	-2-1 50%				kg m²		N m	Anl/h	
0,12	HB2Z	63 B	6	910	1,26	0,57	0,57	53,7	49,5	41,1	2,7	2,8	2,5	0,0005	BZ12	3,5	12500	6,3
0,18	HB2Z	71 A	6	910	1,89	0,62	0,68	61,6	59,8	51,9	2,4	2,5	3,2	0,0010	BZ53	5	11200	8,7
0,25	HB2Z	71 B	6	900	2,65	0,85	0,68	62,4	60,7	54	2,5	2,6	3,2	0,0013	BZ53	5	11200	9,5
0,37	HB2Z	80 A	6	930	3,8	1,2	0,67	66,8	65,4	58,4	2,5	2,6	3,6	0,0021	BZ04	11	9500	12
0,55	HB2Z	80 B	6	920	5,7	1,68	0,68	69,8	69,7	64,9	2,5	2,6	3,7	0,0027	BZ04	16	9000	13,5

6-polig - 1000 min⁻¹ IP55 IC411 Isolationsklasse F Übertemperaturklasse B

IE3 400 V - 50Hz **ErP**

P_{N}	Motor		n _N	M _N	I _N	cos φ		η IE3		$M_{\rm s}/M_{\rm N}$	M_{max}/M_{N}	I _s / I _N	J_o	Bremse	M_{f}	Z ₀	∰ kg
kW			min ⁻¹	N m	A 400V		IEC 100%	60034 75%	-2-1 50%				kg m²		N m	Anl/h	9
0,75	HB3Z 90 S	6	930	7,7	2	0,72	78,9	76	73	2,1	2,9	4,9	0,0057	BZ14	16	7100	19,5
1,1	HB3Z 90 L	6	930	11,3	2,8	0,72	81	79	77	2,6	3	5,1	0,0071	BZ05	27	5300	26
1,5	HB3Z 100 LA	6	950	15,1	3,5	0,75	82,5	82,4	80,4	2,5	3,4	6,5	0,0133	BZ15	40	3000	32
2,2	HB3Z 112 M	6	960	21,9	5,1	0,73	84,3	85	83,2	2,3	3,5	6,9	0,0211	BZ06S	50	2800	42
3	HB3Z 132 S	6	970	29,5	6,9	0,72	85,6	88	86,3	2,4	3,8	7,6	0,0445	BZ56	75	1400	65

Aufstellung und Wartung

Sektioninhalt

14.1	Sicherheit	224
14.2	Aufstellung und Wartung	225

Aufstellung und Wartung

14.1

Sicherheit

Wichtig:

Die von Rossi S.p.A. gelieferten Getriebemotoren sind für den Einbau in Endgeräte oder fertige Systeme bestimmt. Die Inbetriebnahme einer Komponente ist untersagt, bis die Konformität des Geräts bzw. des Systems, in das sie eingebaut wurde, mit folgenden Richtlinien bescheinigt wird:

- Maschinenrichtlinie 2006/42/EG und Änderungsrichtlinien: insbesondere ist für eventuelle Schutzeinrichtungen für nicht verwendete Wellenenden und für eventuell zugängliche Lüfterabdeckungen o.ä. der Kunde verantwortlich:
- EMV-Richtlinie «Elektromagnetische Verträglichkeit» 2004/108/EWG und Änderungsrichtlinien.

Achtung!

Alle in diesem Habdbuch enthaltenen Anweisungen, alle die Anlage betreffenden Anweisungen, alle gesetzlichen Sicherheitsvorschriften dieses Handbuchs und alle die sachgemäße Installation betreffenden einschlägigen Normen müssen unbedingt beachtet werden. Bei etwaigen Personen und Sachschäden wegen Fall oder vorstehender Teile der Getriebe ist es notwendig, folgende Sicherheitsmaßnahmen gegen Lösen und Brechen von Befestigungsschrauben zu nehmen:

Bei Betriebsstörungen (Temperaturzunahme, ungewöhnliches Geräusch, usw.) die Maschine sofort anhalten.

Sicherheit bei der Aufstellung

Die unsachgemäße Installation, der zweckwidrige Gebrauch, das Entfernen der Schutzeinrichtungen, das Abklemmen der Sicherheitsvorrichtungen sowie nachlässige Kontrolle und Wartung und falsche Ausführung der Anschlüsse können zu schweren Personen- und Sachschäden führen.

Daher darf die Komponente ausschliesslich von verantwortungsvollen und spezifisch ausgebildeten Fachkräften mit der notwendiger Erfahrung gehandhabt, installiert, in Betrieb genommen, inspektioniert, gewartet und repariert werden, um die etwaigen Risiken zu erkennen und zu vermeiden.

Die im vorliegenden Handbuch behandelten Getriebemotoren sind normalerweise für den Einsatz in industrieller Umgebung bestimmt: Zusätzliche Schutzmaßnahmen, die ggf. erforderlich sind, müssen von der für die Installation verantwortlichen Person getroffen und garantiert werden.

Achtung!

Komponenten in Sonderausführung oder mit **Bauänderungen** können leicht abweichen und deswegen zusätzliche Informationen erfordern.

Achtuna

Für die Aufstellung, Anwendung und Wartung des Motors oder des etwaigen Motorverstellgetriebes und/oder der elektrischen Vorrichtung (Frequenzumschalter, Soft-Start, usw.) und/oder etwaiger zusätzlichen Vorrichtungen (z.B.: unabhängige Kühleinheit, usw.) bitte die beiliegende technische Dokumentation betrachten. Bei Bedarf anfordern.

Sicherheit bei der Wartung

Alle Eingriffe am Getriebemotor und an den angeschlossenen Komponenten müssen bei stillstehender und kühler Maschine ausgeführt werden: Den Motor (einschliesslich der Hilfseinrichtugen) von der Stromquelle und das Getriebe von der Last trennen. Sicherstellen, dass alle Sicherheitsmaßnahmen gegen den ungewollten Anlauf getroffen wurden und wo erforderlich mechanische Verriegelungsvorrichtungen einsetzen (sie müssen vor der Inbetriebnahme selbstverständlich wieder entfernt werden).

Achtung!

Während des Betriebs könnten die Getriebe **heiße Oberflächen** haben; stets vor Ausführung von Arbeiten abwarten, bis das Getriebe oder der Getriebemotor abgekühlt ist. Weitere technische Dokumentation kann aus Website **www.rossi.com** entladen werden.

14 2

Aufstellung und Wartung

Achten, dass die Unterkonstruktion, auf welcher der Getriebemotor montiert und befestigt wird, eben, nivelliert und ausreichend dimensioniert ist, um Befestigungsfestigkeit und Vibrationsfreiheit zu gewährleisten, unter Betrachtung der übersetzten Kräfte der Massen, des Drehmoments, der Radial- und Axialbelastungen.

Die Getriebemotoren benötigen ausreichende Luft für die Kühlung des Getriebes und des Motors (dies gilt besonders für die Lüfterseite des Motors).

Darauf achten, dass der Kühlluftdurchgang nicht verstopft ist, das Getriebe nicht in der Nähe von Heizquellen mit Einwirkung auf Kühl- und Getriebelufttemperatur (für Ausstrahlung) aufgestellt wird, genügend Luft zu- und abströmen kann, überhaupt Einsätze ohne geregelte Wärmeabgabe vermieden werden. Getriebe vibrationsfrei aufstellen.

Bei Einwirkung von Außenlasten sind bei Bedarf Stifte oder Sperrvorrichtungen vorzusehen.

Bei der Befestigung zwischen Getriebe und Maschine und/oder zwischen Getriebe und eventuellem B5-Flansch wird empfohlen, **Starkkleber** Typ LOCTITE in den Befestigungsschrauben anzuwenden (auch in den Passflächen zur Flanschbefestigung).

Bei Aufstellung im Freien oder in aggressiv Umgebung müssen Getriebemotoren mit Rostschutzlack lackiert werden, und bei Bedarf mit wasserabstoßendem Fett überziehen (besonders wichtig bei rotierenden Dichtringsitzen und Wellenenden).

Wenn möglich, den Getriebemotor mit geeigneten Mitteln vor direkter Sonnenausstrahlung und extremen Witterungsverhältnissen schützen: Dieser Schutz ist bei Bauformen V5 und V6 unerläßlich.

Bei Umgebungstemperatur über 40° C bzw unter 0°C, Rossi S.p.A. rückfragen.

Bevor man den elektrischen Anschluss des Getriebemotors vornimmt, muss man sich vergewissern, dass die Spannung des Motors mit der Netzspannung übereinstimmt.

Bei verkehrtem Drehsinn sind zwei der drei Zuleitungsphasen zu vertauschen.

Bei voraussichtlich längeren Überbelastungen, Stößen oder Hemmgefahr müssen Motorschutzschalter, elektronische Drehmomentbegrenzer, Hydraulik- und Sicherheitskupplungen, Kontrolleinheiten oder andere gleichwertige Schutzvorrichtungen eingebaut werden.

Bei Betrieb mit hoher Einschaltzahl unter Last den Motor mit (im Motor eingebauten) **Thermofühlern** schützen; das Thermorelais ist nicht geeignet, da es zu höheren Werten als denjenigen des Motornennstroms eingestellt werden sollte.

Die durch die Schaltrelais verursachten Spannungsspitzen durch den Einsatz von Varistoren begrenzen.

Achtung!

Die Lebensdauer der Lager und der gute Betrieb der Wellen und Kupplungen hängen auch von der Präzision zwischen den Wellen ab.

Das Getriebe einwandfrei mit dem Motor (wenn nötig durch Unterlegung) und der angetriebenen Maschine ausfluchten und möglichst immer elastische Kupplungen zwischenschalten.

Wenn ein unvorgesehener Schmiermittelverlust schwere Beschädigungen verursachen kann, die Häufigkeit der Kontrollmaßnahmen erhöhen bzw. entsprechende Überwachungsgeräte einbauen (z.B.: Ölstandfernanzeige, Schmiermittel für die Lebensmittelindustrie, usw.).

In verunreinigten Arbeitsbereichen muss die Schmiermittelverschmutzung durch die Dichtringe oder etwas anderes auf wirksame Weise vorgebeugt werden.

Bei Brems- oder Sondermotoren die gesonderten Unterlagen anfordern.

Einbau von Maschinenelementen auf die Wellenenden

Für die Bohrung der auf das langsamlaufende Wellenende aufgezogenen Elemente wird die Toleranz K7 (H7 wenn die Belastung gleichmässig und leicht ist) empfohlen.

Vor der Montage alle Kontaktflächen gründlich reinigen und schmieren, um Freßerscheinungen und Kontaktkorrosion zu vermeiden. Sowohl Montage als Demontage werden mit Hilfe von Zugbolzen und Abziehern vorgenommen, indem man sich der Gewindebohrung am Wellenkopfende bedient.

Auswahlformular

1 Anwendungsbedingungen	Umgebungstemperatur [°C] min normal max	Getriebeposition: egge Umgebung mit begrenzter
Anwendungsbereich/Industriebereich		Luftbewegung (v _{Luft} < 0,63 m/s) ☐ erweiterte Umgebung mit freier
Anzutreibender Maschinentyp	Höhe [m ü.M.]	Luftbewegung (v _{Luft} >1,25 m/s) ☐ im Freien, gegen Sonneneinstrahlung und
O manus Massahina	Umachuna	Witterung geschützt
neue Maschineexistierende Maschine, im Betrieb	<u>Umgebung:</u> ☐ normal (industriel) im Innenraum	
mit existierendem Getriebe	normal (industriel) im Freien	
	staubig	
	□ korrosiv / feucht	
2 Belastungsangaben		
Z Delastungsangaben	Belastungsart:	Betriebsdauer [h/d]
Abtriebsdrehzahl [min-1]	gleichmäßig	<u> </u>
min Nenn- max	□ mäßige Überbelastungen	
	☐ heftige Überbelastungen	Cocomtdouer [h]
Erforderliches Abtriebsdrehmoment [N m]	Schalthäufigkeit [Anl./h]	Gesamtdauer [h]
min Nenn- max	Schaithauligkeit [Ahli:/h]	
		Datriahaart (C4 C40)
Abtriebsleistung [kW]	Trägheitsmoment der Maschine [kg m²]	Betriebsart (S1 S10)
min Nenn- max	min normal max	
THIN INCHIP	min normal max	Beigefügter Belastungszyklus
Antich admired to 100 ftm 1 2 2 2		
Antriebsdrehzahl (Getriebe) [min ⁻¹] min Nenn- max		nein
THIII INGIII- IIIAA		
3 Motor	IEC-Motorgröße (DS-Motor)	Ausführung des (DS- und Gs-) E-motors:
Motortyp:	Einschaltungstyp des DS-Motors:	☐ mit Fremdlüfter☐ mit Drehgeber:
☐ Asynchroner Drehstrommotor (DS)	☐ direkt	☐ mit Drengeber.
☐ As. Drehstrommotor mit Frequmrichter	□ Y/Δ	O mili radio Dynamo
☐ DS mit Gleichrichter	☐ soft starter / inverter	Verbindung mit dem Getriebe:
 Verbrennungsmotor (Einzylinder) 	Elektromagnetische Bremse	☐ mit Kupplung
Verbrennungsmotor (Mehrzylinder)	Standbremse	☐ mit Keilriemen
Laistena D. HAAD	☐ Arbeit	Sektion Nr. d_m [mm] d_1 [mm]
<u>Leistung P, [kW]</u> min Nenn- max	☐ SicherheitDrehmoment [N m]	0.1171
THE THE THE	<u> Bronnoment [14 m]</u>	mit Zahnriementrieb Sektion Nr. d _m [mm]
		<i></i>
Nenndrehzahl n ₁ [min ⁻¹]	Anlaufmoment [N m]	Etunius Danussuus das Astrickaussuuskadarfe
min Nenn- max		Etwaige Begrenzung des Antriebsraumbedarfs
	Trägheitsmoment [kg m²]	
DS-Motorversorgung:		
Spannung [V] Frequenz [Hz]		
4 Getriebe	Maschinenanschluss Aufsteckbefestigung	
Bauform	 ☐ mit elastischer / halbelast. Kupplung 	/d -
	☐ mit Kardangelenk	Jan 22
Drehsinn an der langsamlauf. Welle	☐ mit Zahnriementrieb	
weisser Pfeil	Teilung $d_{_{m}}$ $d_{_{1}}$ ϕ	
☐ schwarzer Pfeil☐ weisser und schwarzer Pfeil	☐ mit Kette	d ₁ , z ₃
	Teilung Nr. z_2 z_3 Überhang [mm] ϕ	
Rücklaufsperre (wenn vorhanden)		
☐ freie Drehung weisser Pfeil☐ freie Drehung schwarzer Pfeil	□ mit geradzahnigem Stirnradpaar Teilung Nr. z₂ z₃ Überhang[mm] φ	Z(Total
United Dienting Schwarzer Fiell	Teilung Nr. z_2 z_3 Uberhang [mm] ϕ	
Zuläßiges Kühlsystem		
mit Lüfter	Etwaige Axialbelastung F _a [N]	
☐ mit Kühlschlange☐ mit Innenaustauscher		
mit UR O/A-Einheit		
mit UR O/W-Einheit	Etwaige Begrenzung des Antriebsraumbedarfs	
J IIII ON ON EMILIER		

Technische Formeln

Größe	Mit Einheit technischen Maßsystems	Mit SI-Einheit
Anlauf- oder Auslauf zeit in Abhängigkeit von einer Beschleunigung oder Verzögerung, von einem Anlauf- oder Bremsmoment	$t = \frac{v}{bis} [s]$ $t = \frac{Gd^{c} \cdot n}{375 \cdot M} [s]$	$t = \frac{J \cdot \omega}{M} [s]$
Geschwindigkeit bei Drehbewegung	$v = \frac{\pi \cdot d \cdot n}{60} = \frac{d \cdot n}{19.1} \text{ [m/s]}$	$v = \omega \cdot r \text{ [m/s]}$
Drehzahl	$n = \frac{60 \cdot v}{\pi \cdot d} = \frac{19.1 \cdot v}{d} \text{ [min-1]}$	$\omega = \frac{v}{r}$ [rad/s]
Beschleunigung oder Verzögerung in Abhängigkeit von einer Anlauf- oder Auslaufzeit	$a = \frac{v}{t} [m/s^2]$	
Winkelbeschleunigung oder -verzögerung in Abhängigkeit von einer Anlauf- oder Auslaufzeit, von einem Anlauf- oder Bremsmoment	$\alpha = \frac{n}{9,55 \cdot t} [\text{rad/s}^2]$ $\alpha = \frac{39,2 \cdot M}{Gd^2} [\text{rad/s}^2]$	$\alpha = \frac{\omega}{t} \text{ [rad/s}^2\text{]}$ $\alpha = \frac{M}{J} \text{ [rad/s}^2\text{]}$
Anlauf- oder Auslauf weg in Abhängigkeit von einer Beschleunigung oder Verzögerung einer End- oder Anfangsgeschwindigkeit	$s = \frac{a \cdot t^{2}}{2} [m]$ $s = \frac{v \cdot t}{2} [m]$ $w = \frac{a \cdot t^{2}}{2} [rad]$	
Anlauf- oder Auslaufwinkel in Abhängigkeit von einer Winkelbeschleunigung oder -verzögerung, einer End- oder Anfangswinkelgeschwindigkeit	$\varphi = \frac{n \cdot t}{19,1} $ [rad]	$\varphi = \frac{\omega \cdot t}{2} \text{ [rad]}$
Masse	$m = \frac{G}{g} \left[\frac{\text{kgf s}^2}{\text{m}} \right]$	m ist die Masseneinheit [kg]
Gewicht (Gewichtskraft)	G ist die Gewichtseinheit (Gewichtskraft) [kgf]	$G = m \cdot g[N]$
Kraft bei senkrechter (Anheben), waagrechter, geneigter Linearbewegung (μ = Reibungszahl; φ = Neigungswinkel)	$F = G [kgf]$ $F = \mu \cdot G [kgf]$ $F = G (\mu \cdot \cos \varphi + sen \varphi) [kgf]$	$F = m \cdot g [N]$ $F = \mu \cdot m \cdot g [N]$ $F = m \cdot g (\mu \cdot \cos \varphi + \sin \varphi) [N]$
Schwungmoment Gd², Massenträgheitsmoment J infolge einer Linearbewegung	$Gd^2 = \frac{365 \cdot G \cdot v^2}{n^2} \text{ [kgf m}^2\text{]}$	$J = \frac{m \cdot v^2}{\omega^2} \text{ [kg m²]}$
	$M = \frac{F \cdot d}{2} \text{ [kgf m]}$ $M = \frac{Gg^2 \cdot n}{375 \cdot t} \text{ [kgf m]}$ $M = \frac{716 \cdot P}{n} \text{ [kgf m]}$	$M = F \cdot r [N m]$ $M = \frac{J \cdot \omega}{t} [N m]$ $M = \frac{P}{\omega} [N m]$
Arbeit, Energie bei der Linear- oder Drehbewegung	$W = \frac{G \cdot v^2}{19.6} \text{ [kgf m]}$ $W = \frac{Gd^2 \cdot n^2}{7160} \text{ [kgf m]}$	$W = \frac{m \cdot v^2}{2} [J]$ $W = \frac{J \cdot \omega^2}{2} [J]$
Leistung b. der Linear- oder Drehbewegung	$P = \frac{F \cdot v}{75} \text{ [CV]}$	$P = F \cdot v [W]$
Leistung , die an der Welle eines Drehstrommotors abgegeben wird ($\cos \varphi$ = Leistungsfaktor)	$P = \frac{M \cdot n}{716} [CV]$	$P = M \cdot \omega$ [W]
Leistung, die an der Welle eines Drehstrommotors abgegeben wird	$P = \frac{U \cdot I \cdot \eta \cdot \cos \varphi}{736} [CV]$	$P = U \cdot I \cdot \eta \cdot \cos \varphi [W]$
	$P = \frac{U \cdot I \cdot \eta \cdot \cos \varphi}{425} [CV]$	$P = 1.73 \cdot U \cdot I \cdot \eta \cdot \cos \varphi [W]$

Anmerkung. Beschleunigung oder Verzögerung verstehen sich konstant; die Linear- oder Drehbewegungen verstehen sich geradlinig.

Anmerkungen

Rossi S.p.A. Via Emilia Ovest 915/A 41123 Modena - Italy

info@rossi.com www.rossi.com

2635.CAT.iFIT-iC-iO-23.03-1-DE

© Rossi S.p.A. Rossi reserves the right to make any modification whenever to this publication contents. The information given in this document only contains general descriptions and/or performance features which may not always specifically reflect those described.

The Customer is responsible for the correct selection and application of product in view of its industrial and/or commercial needs, unless the use has been recommended by technical qualified personnel of Rossi, who were duly informed about Customer's application purposes. In this case all the necessary data required for the selection shall be communicated exactly and in writing by the Customer, stated in the order and confirmed by Rossi. The Customer is always responsible for the safety of product applications. Every care has been taken in the drawing up of the catalog to ensure the accuracy of the information contained in this publication, however Rossi can accept no responsibility for any errors, omissions or outdated data. Due to the constant evolution of the state of the art, Rossi reserves the right to make any modification whenever to this publication contents. The responsibility for the product selection is of the Customer, excluding different agreements duly legalized in writing and undersigned by the Parties.